
SANDIA REPORT
SAND2010-2051
Unlimited Release
Printed May 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization & Uncertainty Estimation Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

ii

SAND2010-2051
Unlimited Release
Printed May 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

Coding and documentation guidelines help to improve the quality of code and facilitate
collaborative development. This document covers C++ coding, code formatting, and Doxygen
documentation guidelines that have been established for the Trilinos package Thyra. Many of these
guidelines are followed in other Trilinos packages as well.While some of the guidelines outlined in this
document are more specifically targeted to Thyra, most of theguidelines are more general than Thyra or
even Trilinos.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.

iii

Contents

1 Introduction .. 1
2 Alpha-numeric item designations .. 3
3 Naming conventions (NC) .. 4
4 Naming and organization of source files (NOSF) 8
5 Coding guidelines .. 9

5.1 General coding guidelines (GCG) .. 9
Error handling .. 9
Memory management .. 9
Object Control .. 12
Object Introspection .. 12
Miscellaneous coding guidelines .. 13

5.2 Specification of data members and passing and returning objects from functions 19
6 Formatting of source code .. 25

6.1 General formatting source code principles (FSCP) 25
6.2 Specific guidelines for formatting source code (FSC) 26

7 Doxygen documentation guidelines .. 35
7.1 General principles for function and class level documentation (DOXP) 35
7.2 Specific Doxygen documentation principles (DOX) 36

References .. 40

Appendix

A Summary of guidelines .. 41
B Summary of Teuchos memory management classes and idioms . .. 46
C Summary of “C++ Coding Standards” (CPPCS) with amendments. 54
D Miscellaneous amendments to “C++ Coding Standards” 58

D.1 Amendments to items related to compiler/linker incompatibilities . 58
D.2 Amendments for ’using’ declarations and directives 59

E Arguments for adopting a consistent code formatting style. 64
E.1 Statements on coding style from varied persons and/or organizations 64

E.1.1 Open source software (the GNU project) 64
E.1.2 Agile Methods (Extreme Programming) 65
E.1.3 Code Complete .. 66
E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard . 67

E.2 The keyboard analogy for coding styles 68
E.3 Conclusions .. 68

F Guidelines for reformatting of source code 70

iv

1 Introduction

This document deals with C++ coding guidelines starting from the foundation of the guidelines in the book
“C++ Coding Standards” by Sutter and Alexandrescu [10] (the101 items are outlined in Appendix C) and
the Teuchos-based memory management approach described in[1]. The guidelines in this document are
specifically designed to address the development of object-oriented numerical C++ libraries and to utilize
the tools in the Trilinos package Teuchos. While the main purpose of this document is to define guidelines
for Thyra software (for both interfaces and support software), it is also general enough to be applied to
many other projects that, for instance, might interact withThyra.

The book “C++ Coding Standards” [10] covers many topics thatare more general than C++ and can be
considered to be general design topics. As a result, the book[10] provides a fairly comprehensive
foundation for creating well designed, high-quality C++ software. The goal of this document is not to
restate what is in [10] but instead to fill in some gaps intentionally left by the authors and to provide
amendments to specific items in [10] and tailor them for numerical libraries. The zeroth item (first item,
zero based) “Don’t sweat the small stuff” intentionally avoids specific recommendations on issues such as
the conventions for naming identifiers and the formatting ofcode since these are arbitrary. While issues
related to coding style are less important than other issues, there are arguments for adopting a more
consistent code formatting style and some of these arguments are outlined in Appendix E. Therefore, one
of the purposes of this document is to suggest reasonable andminimal guidelines for naming conventions
and code formatting that provide for enough code uniformityto facilitate collaborative code development,
code reviews, and maintenance in Agile software development processes [3].

More important than code formatting, a consistent set of naming conventions for C++ classes, functions,
variables, and other entities also helps to improve collaborative software development and quality. Also,
since clients of the software must interact with these names, it is even more important that a set of naming
conventions be used as consistently as possible in the client interfaces.

Finally, more important general C++ coding guidelines are covered that append and amend those described
in [10]. While formatting and naming recommendations do notaffect the meaning of C++ code, other
coding guidelines do and therefore they will receive more attention and should be considered more
seriously. Unlike naming conventions and code formatting,these guidelines are difficult to change after a
significant amount of code has been written.

The rest of the main document is organized as follows. An alpha-numeric convention for naming the
various guidelines described in this document is given in Section 2. Then, general naming conventions are
presented in Section 3 and they help provide a context for later code examples. This is followed in
Section 4 with guidelines for naming and organizing source files. Next, important general C++ coding
guidelines are described in Section 5 that affect software quality in critical ways. Following this,
reasonable and minimal formatting guidelines are covered in Section 6. Finally, guidelines for Doxygen
documentation are provided in Section 7.

Several appendices are included that deal with a number of topics. The guidelines presented in this
document are summarized in Appendix A. The 101 guidelines from [10] are listed in Appendix C along
with specifying which items are amended or invalidated by the guidelines in the current document. A
summary of the idioms and conventions surrounding the use ofthe Teuchos memory management classes
are presented in Appendix B. Appendix D contains discussions of items from [10] that are amended or
invalidated in the Thyra coding guidelines. Most importantly, a clarification ofusing declarations is given

1

that is both more rigid in some ways and less rigid in other ways than what is described in [10, Item 59].
Appendix E gives arguments for adopting a consistent code formatting style in a single development team
or single project (which is required with current Agile development methods). Lastly, Appendix F gives
guidelines for when one developer can legitimately reformat a source file written by another developer
when a more consistent code formatting style is not agreed upon.

2

2 Alpha-numeric item designations

Specific items in this document are to be refereed to using numerated acronyms starting with and the
version number (e.g. 1.0). For example, the first naming convention guideline can be refereed to asTCDG
1.0 NC 1. In this way, these short precise alpha-numeric designation such asTCDG 1.0 NC 3can be used
in code reviews as short-hand references to specific guidelines. The version number of the coding standard
is important in order to allow changes in future coding guidelines and allow the numbers to change from
version to version (e.g.NC 1 in TCDG 1.0 might becomeNC 3 in TCDG X.Y).

In addition, this document is based on [10] and those guidelines will be refereed to using an enumerated
acronym such asCPPCS Item 15(i.e. “Use const proactively”).

3

3 Naming conventions (NC)

C++ classes, functions, variables, data members etc. should be named and used in a fairly consistent
manner. The following guidelines are consistent with common practice as exemplified in [8] for example
and are also largely consistent with the Java naming standard1.

• NC 1: Capitalize C++ class and struct names asSomeClass: Names for C++ classes and structs
should generally be capitalized and separate words should be concatenated and capitalized (i.e.
“Camel Case”). For example:

class SomeClass {...};

• NC 2: Capitalize C++ namespace names asSomeNameSpace: C++ namespaces should follow the
same naming convention as C++ classes and namespace names should not contain too many
acronyms and should not be too short or too common. For example:

namespace MyNameSpace {
...
} // namespace MyNameSpace

• NC 3: C++ enum type names should begin withE asESomeEnum and enum values should use all
caps and scope context asSOME ENUM VALUE: Enumeration type names should follow the same
convention as for class and struct names but they should alsobegin with the capital letter ’E’ to
signify that this type is an enum. Enumeration values shouldbe all upper-case with underscores
between words and should use a common prefix for scoping within the enum type. Also, enum
values should use the default value assignment defined by thecompiler in general as this aids their
use as indexes into zero-based arrays. For example:

enum ESolveStatus {
SOLVE_STATUS_CONVERGED,
SOLVE_STATUS_UNCONVERGED,
SOLVE_STATUS_UNKNOWN

};

Justification: Using a capital ’E’ forenums allows the definition of other types with the same basic
name that contain other data. For example,ESolveStatus in anenum enumerating the different
types of solve status andSolveStatus is a C++ struct that contains anESolveStatus member
along with some other data. The use of the scoping prefix (i.e.SOLVESTATUS above) is also
recommended in [7, Section 11.4].

• NC 4: C++ object instance identifier names should begin with a lower-case letter assomeObject:
Formal function arguments and other object identifiers should, in general, start with a lower-case
letter and then use capitalization for following words withno underscores between words in general.
For example:

1http://java.sun.com/docs/codeconv/html/CodeConvTOC. doc.html

4

ClassType1 obj;
ClassType2 objectForMyThing;
ClassType3 objectForYourThing;

Exception:Identifiers that have mathematical symbols in them such asx, J, andalpha should use
lower case names separated by underscores. For example:

Vector curr_x;
Matrix curr_J;
Scalar curr_alpha;

Justification:The Java conventionobjectIdentifierName using capitalization with no underscores
produces shorter readable identifiers for English names butdoes not work well for identifiers with
math symbols. With math symbols, it is important to maintainthe case of the symbol asx andX may
mean something totally different mathematically and it is confusing and/or ambiguous to write either
currx or currX . In these cases, it is far better to use underscores and writecurr x as shown above.
While in it is considered bad practice to differentiate variable names by case alone (see “Don’t
differentiate variable names solely by capitalization” in[7, Section 11.7]), this is very common in
math and mathematical software should support this.

• NC 5: C++ class data member names should begin with a lower-case letter and end with an
underscore assomeDataMember : Names for data members within a class should use the same
naming convention as for other object identifier names but should end with an underscore. For
example:

class SomeClass {
public:

...
private:

int someDataMember_;
};

Justification:Using an underscore after a data variable name helps to definethe scope of the variable
and differentiate that name from a local variable or a memberfunction that may otherwise result in
“shadowing” which causes portability problems on some compilers especially when warnings are
elevated to errors.

Exception: Public data members in simple C++ structs (i.e. where no invariants need to be
maintained) should not contain underscores. For example:

struct SolveStatus {
ESolveStatus solveStatus;
double achievedTol;
std::string message;
...

};

Exception:Identifiers that have mathematical symbols in them such asx, J, andalpha should use
lower case names separated by underscores. For example:

5

Vector curr_x_;
Matrix curr_J_;
Scalar curr_alpha_;

Justification:SeeNC 4 above.

• NC 6: C++ function names should begin with a lower-case letter assomeFunction(...):
Names for functions should use the same naming convention asfor object identifier. For example:

class SomeClass {
public:

void someMemberFunction(...);
};

void someOtherFunction(...);

Exception:Identifiers that have mathematical symbols in them such asx, J, andalpha should use
lower case names separated by underscores. For example:

class SomeClass {
public:

const Vector& get_x() const;
const Matrix& get_J() const;
Scalar get_alpha() const;

};

Justification:SeeNC 4 above.

• NC 7: Name C++ pure abstract base classesBlobBase, default implementation base classes
BlobDefaultBase, and default concrete implementation classesDefaultTypeABlob: In
general, the top-level C++ base class for some abstraction should use the post-fixBase prepended to
the class name (e.g.VectorBase) and the base class should contain (almost) no implementations and
certainly no object data (see Item 36 in [10]). If a default implementation of some of the aspects of
the base class are desired (to make it easier to define concrete subclasses), then they should be put in
a derived node subclass with the post-fixDefaultBase (e.g.VectorDefaultBase). Any default
concrete implementation of an abstraction should generally use the prefixDefault prepended to the
beginning of the name along with any other important prefixes(e.g.DefaultSpmdVector). For
example:

// Pure virtual base class
class VectorBase

: ... // Other base classes
{
public:

virtual void applyOp(...) const = 0;
...

};

// Node base class with some default implementations
class VectorDefaultBase

: virtual public VectorBase

6

{
public:

void applyOp(...) const; // default implementation
...

};

// A general default implementation for SPMD vectors
class DefaultSpmdVector

: virtual public VectorDefaultBase // use some default impl ementations
{
public:

void applyOp(...) const; // Specialized overrides
...

private:
...

};

• NC 8: Prefer to name const and non-const access functions asgetPart() and
getNonconstPart(), respectively: In general, functions that return objects that are contained
within a wrapper object should have the prefixNonconst added to the function that returns the
non-const reference (or pointer) to the contained object. For example,

class SomeClass {
public:

RCP<Part> getNonconstPart();
RCP<const Part> getPart() const;
...

};

Justification: The choice to name the access functionsgetNonconstPart() andgetPart() as
opposed togetPart() andgetConstPart() is somewhat arbitrary. However, usingnonconst
should be preferred in order to make it more explicit that a non-const object reference is being
requested. Also, a constant view of a part of an object is always cheaper that returning a
non-constant view of the part (see the discussion of the “generalized view” design pattern in [1]) and
therefore to be safe and error on the side of efficiency, the non-constant access function should be
harder to call than the constant access function.

7

4 Naming and organization of source files (NOSF)

Since most C++ code is organized around classes, the file structure should also primarily be organized
around classes and the nonmember functions that interact with these classes. The primary goal of these file
naming guidelines is to create file names that are globally unique and will therefore facilitate#include s
without need for directory paths in the#include statement. The basic idea is that a source file should be
named based on what it has, not where it is. The following guidelines help to define how to organize code
into source files and how to name those source files. The directory structure of source files is beyond the
scope of this document.

• NOSF 1: Use file extension names*.hpp (C++ header),*.cpp (C++ source),*.h (C header),
and*.c (C source): These file names avoid common problems with portability to various Unix and
Windows platforms and enable better tools support (like language-specific formatting in Emacs).

• NOSF 2: Include only one major C++ class with supporting code per header and source file with
name(s)NameSpaceA InnerNamespace SomeClass.[hpp,cpp]: As a general rule of
thumb, assign the source code for any major C++ class and supporting code to a single set of header
and source files. The file name should be composed out of the namespace names enclosing the
classes and other code along with the class name itself. For instance, for the class
NameSpaceA::InnerNamespace::SomeClass , the header and source files would be named
NameSpaceA InnerNamespace SomeClass.[hpp,cpp] . This convention assures that the file names
will be globally unique. In addition, having a single set of files for each class helps to keep a single
encapsulation unit of code together which makes searching the encapsulation unit easier.

• NOSF 3: Use internal include guards in all header files: All header files, without exception, should
use include guards [10, Item 24]. For example, the file
NameSpaceA InnerNamespace SomeClass.hpp would have the basic structure:

// @HEADER
// ...
// @HEADER

#ifndef NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP
#define NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

#include "SomeFile.hpp"

...

#endif // NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

Above, the comment// NAMESPACEA INNERNAMESPACESOMECLASSHPPafter the final#endif
helps to show the preprocessor structure in the file and is helpful in cases where other#ifdef or #if
structures are used.

This is a very minor amendment to Item 24 in [10].

8

5 Coding guidelines

Coding guidelines, unlike formatting guidelines, greatlyinfluence the meaning of C++ programs and
therefore require a high priority level. The book “C++ Coding Standards” [10] that this document is
primarily based on provides many good and important coding guidelines that should be followed and by
default all of the items in [10] are assumed in this document.Here, we provide additional coding guidelines
and, in some cases, amend items in [10]. Where this document is silent, [10] is to be considered the
authoritative source for guidance. Some miscellaneous amendments to the items in [10] are given in
Appendix C and D.

5.1 General coding guidelines (GCG)

Below several different general coding guidelines are discussed. These guidelines affect software quality in
a major way and are not just a matter of personal preference orstyle.

Error handling

• GCG 1: UseTEST FOR EXCEPTION(...),TEUCHOS ASSERT(...) and related macros for
reporting all errors, even developer programming errors: For developer errors, prefer to throw
exceptions derived fromstd::logic error instead of using theassert(...) macro as
recommended in [10, Item 68]. A “logic error” would be treated differently from a real run-time
error and would therefore come with different assumptions about the state of the object after the
exception was thrown. In particular, a “real error” (i.e. not just an internal developer error) should
always provide the basic guarantee to leave the object in a valid state [10, Item 71], while code that
throws a “logic error” cannot make any such guarantees in general. Therefore, objects that throw
exceptions derived fromstd::logic error should generally be viewed as unusable and should be
deleted immediately. To debug exceptions, a break-point can be placed on function
TestForException break() 2 which will be called just before an exception is thrown through these
macros. In the future, more sophisticated features like automatically attaching a debugger or printing
the call stack may be added for some systems. Therefore throwing an exception derived from
std::logic error using these macros should be preferred to using theassert(...) macro as it
gives us more control over what happens when one of these types of programming errors occurs.
Also, these exception macros make it much easier to generatebetter error messages than what you
would get from a simple use of theassert(...) macro.

Memory management

• GCG 2: Avoid the use of raw C++ pointers in all but the very specialized siturations: The Teuchos
memory management approach described in [1] mentioned below which include all of the standard
C++ container classes (when using a checked STL implementation), Teuchos::Ptr ,
Teuchos::RCP , Teuchos::Array , Teuchos::ArrayRCP , andTeuchos::ArrayView allow all code
to be written without any explicit raw C++ pointers. In debugmode, these classes provide full
run-time checking that result in exceptions being thrown and excellent error messages (i.e. instead of

2In gdb , a break-point would be set asb TestForException break() .

9

segfaults). When a check C++ standard library is used (e.g. when GXXLIB DEBUGis defined with
g++), then all of the standard C++ library classes are checked as well.

• GCG 3: Usestd::string instead ofchar* or const char*: While std::string is not
debug checked in a typical implementation, indexing and other unchecked operations with
std::string objects is much less common in numerical code and therefore is less likely to result in
memory-usage errors inside of numerical code. However, when a checked C++ library
implementation is used (e.g. whenGXXLIB DEBUGis defined with g++), thenstd::string is very
safe.

• GCG 4: UseTeuchos::Ptr as function arguments and return types in the place of raw C++
pointers to single objects for non-persisting and semi-persisting associations: (see Tables 3 and 4):
The classTeuchos::Ptr simply takes the place of a raw pointer to a single object but is always
default initialized to NULL. In debug mode, it throws exceptions when trying to dereference a null
pointer. Using this class helps to eliminate the need for checking for NULL to avoid undefined
behavior when one dereferences a NULL pointer.

• GCG 5: UseTeuchos::RCP for memory management of single dynamically allocated objects and
for handling persisting associations: (see Tables 3 and 4): Replace all references to the class
boost::shared ptr in all items in [10] withTeuchos::RCP .

• GCG 6: Use non-member constructors for all reference-type classes to force dynamic allocation
returning strong owningTeuchos::RCP objects: Using non-member constructors gives greater
flexibility in how a class object is initialized, simplifies the maintenance of the class, and makes the
debug-mode node tracing checking bullet-proof [1].

Non-member constructors take the form:

class SomeClass {
public:

// No public constructors!
..

};

// Non-member constructor
RCP<SomeClass> someClass(...);

• GCG 7: Specify “generalized view” semantics for all views of abstract objects: Using “generalized
view” semantics leads to the greatest implementation freedom and the best performance in all cases;
abet with more strict usage patterns (see the “generalized view” design pattern in [1]).

If SomeBaseClass provides a view if itself asPart objects, then applying the generalized view
design pattern results in the interface functions:

class SomeBaseClass {
public:

virtual RCP<Part> getNonconstPart() = 0;
virtual RCP<const Part> getPart() const = 0;
...

};

10

The “generalized view” design pattern along with a concreteexample from Thyra is described in
great detail in [1].

Note that views of concrete classes do not have to use “generalized view” semantics and can instead
use “direct view” semantics where appropriate. See all the details about the “non-member
constructor” idiom in [1].

• GCG 8: UseTeuchos::ArrayViewas function arguments and return types in the place of
pointers into raw arrays or other container classes for non-persisting and semi-persisting
associations and where the array does not need to be resized: (see Tables 3 and 4): This class allows
all of the useful capabilities of astd::vector which do not include adding or removing entries. In
debug mode, all of the access functions (including iterators) are fully checked. In optimized mode,
unchecked raw pointers are used and the only overhead is a size argument (which is usually passed
with raw pointers anyway).

• GCG 9: UseTeuchos::Array in place ofstd::vector as a contiguous general purpose data
container: (see Tables 3 and 4): The primary reason to useTeuchos::Array instead of
std::vector is thatTeuchos::Array is part of the Teuchos system of memory management types
and results in stronger run-time checking. WhileTeuchos::Array gets all of its real functionality
from std::vector , prefer to useTeuchos::Array as it provides more capabilities and portable
debug checking. For instanceTeuchos::Array::operator[] is range checked in debug mode
regardless whether there is an underling checked STL implementation or not (see [10, Item 83]). In
debug mode, the iterator is also run-time checked. In addition, Teuchos::Array will automatically
convert into anTeuchos::ArrayView object safely when used in function calls and in debug mode,
will catch dangling references [1].

• GCG 10: UseTeuchos::ArrayRCP for memory management of dynamically allocated objects
stored in contiguous arrays of data and for persisting associations involving contiguous arrays: (see
Tables 3 and 4): Note thatTeuchos::ArrayRCP does nottake the place of a contiguous container
class such asTeuchos::Array . A Teuchos::ArrayRCP object cannot change the size of the array, it
can only provide for reference-counted sharing of an array of data of fixed size and provide
sub-views of contiguous parts of the managed array. All access to data (both through
Teuchos::ArrayRCP::operator[] and iterators) is run-time checked in a debug build.

• GCG 11: Always returnPtr, RCP, ArrayView, andArrayRCP smart pointer objects by value,
never by reference: (see Tables 5 and 6): Returning smart pointer objects by value is critical for
properly setting up the machinery for persisting and semi-persisting associations and to fully enabled
debug-mode checking [1].

• GCG 12: Only return a raw C++ reference from a function for non-persisting associaitons and use
the reference and discard it in the same same statement: (see Tables 3 and 4): Raw C++ references
cannot be used to detect dangling references in a debug-modebuild and therefore should only be
used for non-persisting associations [1].

• GCG 13: Return onlyPtr andArrayView objects by value to establish semi-persisting
associations; never use a raw C++ reference for a semi-persisting association: (see Tables 3, 4, 5,
and 6): Objects of typePtr andArrayView are light-weight and efficient in a non-debug mode build
but are fully checked in a debug-mode build and therefore lead to safe efficient code [1].

• GCG 14: When raw C++ pointers must be exposed (i.e., due to interfacing with non-compliant
code), minimize the amount of code exposed to the raw pointer: When raw C++ pointers must be

11

exposed to communicate with other code that uses raw C++ pointers, encapsulate the raw C++
pointer as fast as possible and then only give up a raw pointerat the last possible moment. For
example,

SomeForeignClass* get_raw_foreign_obj_ptr();
do_some_foreign_stuff(SomeForeignClass* foreign_obj_ ptr);

void foo()
{

// Get the raw pointer into a proper encapsulated class objec t right away!
Ptr<SomeForeignClass> foreignObj(get_raw_foreign_obj _ptr());

// Lots of code ...

// Only expose the raw pointer directly in the foreign functi on call!
do_some_foreign_stuff(&*foreignObj);

}

Object Control

• GCG 15: Accept user options at runtime through aTeuchos::ParameterListobject by
deriving from theTeuchos::ParameterListAcceptor interface: The
Teuchos::ParameterList class provides many useful features that make it easy to accept user
options in a flexible and fully validated way (see Teuchos documentation for more details). The
Teuchos::ParameterListAcceptor interface defines a consistent flexible protocol for settingand
managing a parameter list.

• GCG 16: Fully validate all parameters and sublists in acceptedTeuchos::ParameterList
objects usingvalidatePamaters(...) and other means: All user parameters and sub-lists
passed in through aTeuchos::ParameterListAcceptor should be fully validated. The main tool
for this is the member functionvalidateParameters(...) . Using this function and other other
approaches, when a user misspells a parameter or sub-list, uses the wrong type for a parameter, or
provides an invalid parameter value, they will get an exception thrown with a helpful error message.
Also, objects are only responsible for validating their ownparameters and sub-lists, and not those of
other objects that they hold sub-lists for.

Object Introspection

• GCG 17: Always send output to some generalstd::ostream object; Never send output directly
to std::cout or std::cerr; Never print output withprint(...) or printf(...):
Sending output directly tostd::cout or std::cerr destroys the flexibility of numerical software
and does not perform well in SPMD programs. Instead, produceoutput using one of the following
approaches.

• Prefer to print output through aTeuchos::FancyOStreamobject instead of through a bare
std::ostream object to more easily produce indented formatted output: A
Teuchos::FancyOStream class object can wrap anystd::ostream object and helps to produce
structured indented output and to create more readable output in an SPMD program (even when
every processor produces output).

12

• Derive fromTeuchos::Describableand implement the functionsdescription() and
describe() to allow clients to print the current state of an object: TheTeuchos::Describable
interface is the appropriate way to allow clients to print the current state of an object in a flexible
way. The verbosity of the output is controlled by an input enum parameter.

• Derive fromTeuchos::VerboseObjectand print to*this->getOStream() to give
information about what an object is doing: Clients can set the output stream and the verbosity level
through a parameter list (see theTeuchos::ParameterListAcceptor interface described above) or
can set them directly in code. If no output stream is set, then
Teuchos::VerboseObjectBase::getDefaultOStream() will be used.

• As a last resort, always prefer printing to

*Teuchos::VerboseObjectBase::getDefaultOStream() instead ofstd::cout or
std::cerr: The stream provided by*Teuchos::VerboseObjectBase::getDefaultOStream()
is set up by default to do clean printing in an SPMD program andcan also be set up through a
Teuchos::CommandLineProcessor object to control how output is produced and formatted.

Miscellaneous coding guidelines

• GCG 18: Prefer to explicitly specify template arguments in a template function call to avoid
protability problems and enable implicit covnersions of input arguments: If it is not too inconvenient,
then preferring to explicitly define the template argumentsin a template function call can massively
improve the portability of templated C++ code. For example,in Thyra, every non-member function
is templated on theScalar type such as:

template<class Scalar>
sum(const VectorBase<Scalar> &x);

When portability is a concern or when implicit conversions in the input arguments are needed, then
prefer to call such functions by specifying the template argument(s) as:

Scalar mySum = sum<Scalar>(myVec);

• GCG 19: Use the template functionTeuchos::as<T to>(T from) for all conversion of value
data types that may result in loss of precision or in an incorrect conversion: The templated C++
functionTeuchos::as<T to>(T from) and the class specializations that it calls will contain
run-time tests, in debug mode, for the results of a conversion to ensure correctness. This includes the
conversion of strings into numbers (i.e. replacingatof() andatoi()) as well as conversions that
can result in loss of precision or meaning (such asdouble to int , long int to int , int to char ,
unsigned int to int , etc.). The optimized implementations of these conversionfunctions are
typically unchecked for speed. A version this function which always does run-time checking is also
available calledTeuchos::asSafe<T to>(T from) in order to validate user data.

Justification: Unchecked conversions are the result of many different types of errors and a fully safe
program needs to be able to check all such potentially unsafeconversions at run-time. The implicit
conversion rules allowed in C which where carried over to C++can result in very unsafe code.

• GCG 20: Use namespace enclosure for the definition of C++ class members: The member functions
of a class should be defined in the same order as their declarations and should generally be defined
within a namespace enclosure. For example, given the declaration of

13

// SomeNamespace_SomeClass.hpp

namespace SomeNamespace {

class SomeClass {
public:

void someFunc();
...

};

} // namespace SomeNamespace

the safest and tersest ways to define the member functions in the source file is

// SomeNamespace_SomeClass.cpp

namespace SomeNamespace {

void SomeClass::someFunc()
{

...
}

} // namespace SomeNamespace

Justification: Using the namespace enclosure instead of ausing namespace SomeNamesapce
directive insures that you can never accidentally provide another definition for some other class
member function in another namespace. Explicit namespace qualification is not needed since if one
misspells any part of the prototype, then the compiler will issue an error message.

• GCG 21: Use explicit namespace qualification for the definition of all nonmember C++ functions:
For example, for the nonmember function prototype

// SomeNamespace_someFunc.hpp

namespace SomeNamespace {

void someFunc(const int data);

} // namespace SomeNamespace

the safest way to define the nonmember function is

// SomeNamespace_someFunc.cpp

14

void Thyra::someFunc(const int data)
{

...
}

Justification: Using explicit namespace qualification avoids problems ofspelling and other mistakes
that can accidentally result in the definition of a new function [9, Section 8.2]. Such a mistake is
caught at link time but it can be very hard to figure out the rootcause of the problem when this
happens.

• GCG 22: For general functions, prefer to list function arguments inthe order of input, input/output,
output, and finally optional arguments with default values: For example:

void someFunc(
const T1 &arg1, // Input
const Ptr<T2> &arg2, // Input/Output
const Ptr<T3> &arg3, // Output
const int arg4 = 0 // Optional input argument with defualt val ue
);

This ordering of arguments is only a general suggestion as a different ordering of arguments may be
chosen based on other criteria. See Section 5.2 for a description of the use of thePtr class.

• GCG 23: For non-member object functions, list the object as the firstargument passed in as a const
reference or non-const reference: For example:

void someModifyingFunc(
SomeClass &obj,
const int arg1,
...
);

void someNonModifyingFunc(
const SomeClass &obj,
const int arg1,
...
);

Note that in the case ofsomeModifyingFunc(...) , the output argument is listed first instead of
after the input argument(s) which breaks typical convention of having input/output arguments (which
all objects that are modified are) come after input arguments. However, this is more consistent with
established convention such as in Python and other languages where theself argument is always the
first explicit (or implicit) argument. Note that this is alsoa situation where a non-const reference
argument makes the most sense.

• GCG 24: Preferenums tobools as formal function arguments when conversion mistakes are
likely: While the built-in typebool is very convenient to use as a formal function argument, it also
allows for conversions from every built-in type and every pointer type. While using an enumeration
type and its values is more verbose, it is also self documenting and is safer. For example, what does
the third argument mean in the following example?

15

apply(A, 2.0, true, x, y);

When thebool argument is changed to an enum, the function call becomes:

apply(A, 2.0, USE_TRANSPOSE, x, y);

and the meaning is much more clear. Therefore, when self documentation and compile-time safety
are important, prefer to define and useenums overbool s as formal function arguments (see [7,
Section 12.6]).

• GCG 25: Avoid overloading virtual functions: Overloaded virtual functions cause sever portability
problems with many compilers and result in shadowing warnings that are elevated to errors in may
systems [8, Item 33].

• GCG 26: Avoid overloading functions on different smart pointer types (e.g.,RCP, Ptr, etc.):
Overloading functions on different smart pointer types, such asRCPor Ptr can create ambiguous
function calls that will not happen when using raw C++ pointers or references [1]. Therefore, keep
the names of the functions different such as shown below.

void nonconstFoo(const RCP<A> &a);
void foo(const RCP<const A> &a);

• GCG 27: Include only standard C++ headers<cX>, not standard C headers<X.h>, and avoid all
using namespace std directives: Only include the C++<cX> versions of the standard C
<X.h> headers. For example, include<cmath> , <cstdlib> , and<cassert> instead of<math.h> ,
<stdlib.h> , and<assert.h> . Avoid all uses ofusing namespace std directives and instead
prefer explicit namespace qualification such asstd::sqrt or using declarations such asusing
std::sqrt only within function definitions. See [9, Section 16.1.2] for a complete list of the
standard C++ versions of the standard C headers.

Justification: See Appendix D for a clarification of Item 59 in [10] dealing with the issue ofusing
declarations and directives.

• GCG 28: Break up templated code into four filesSomeClass decl.hpp,
SomeClass def.hpp, SomeClass.hpp, andSomeClass.cpp to support both implicit and
explicit instantiation, minimize recompilation, and avoid problems in mutually dependent (i.e.
circular) declarations: Breaking up templated C++ code into the four files
SomeClass[decl, def].[hpp,cpp] (as described below) allows for a portable and bullet-proof
solution to handing templated C++ code which allows for a) controlled explicit or implicit template
instantiation, b) minimization of first-time compilation,c) minimization of recompilations, and d)
handling of any and all types of circular dependency in declarations and definitions (same as are
allowed with non-templated C++ code).

As an example, consider three classesA, B, andC whereA andB refer to each other and whereC has
no chance of being involved in a circular reference involving A andB. The four files
A[decl, def].[hpp,cpp] for classA as well as the fileB decl.hpp are shown below (the other
files for classB are similar):

16

// A.hpp

#include "A_decl.hpp"
#ifndef HAVE_THYRA_EXPLICIT_INSTANTIATION
include "A_def.hpp"
#endif

// A_decl.hpp

#ifndef A_DECL_HPP
#define A_DECL_HPP

#include "B_decl.hpp" // Only include decl in case of circul ar ref
#include "C.hpp" // No chance of cicular ref

namespace Thyra {

template<class Scalar>
class A {
pubic:

void doSomething(const B<T> &b) const;
...

private:
RCP<C<T> > c_;

};

} // namespace Thyra

#endif // A_DECL_HPP

// B_decl.hpp

#ifndef B_DECL_HPP
#define B_DECL_HPP

namespace Thyra {

template<class Scalar> class A; // Forward only due to circu lar ref!

template<class Scalar>
class B {
pubic:

void doSomething(const A<T> &a) const;
};

} // namespace Thyra

#endif // B_DECL_HPP

17

// A_def.hpp

#ifndef A_DEF_HPP
#define A_DEF_HPP

#include "B.hpp" // Must include for implicit instant to wor k!

namespace Thyra {

template<class Scalar>
void A::doSomething(const B<T>& b)
{

b.doSomething(*this);
}

} // namespace Thyra

#endif // A_DEF_HPP

// A.cpp

#include "A_decl.hpp" // Helps test header sufficiency

#ifdef HAVE_THYRA_EXPLICIT_INSTANTIATION
#include "A_def.hpp"
#include "Teuchos_ExplicitInstantiationHelpers.hpp"
namespace Thyra {TEUCHOS_CLASS_TEMPLATE_INSTANT_SCALAR_TYPES(A)}
#endif // HAVE_THYRA_EXPLICIT_INSTANTIATION

General client code alwaysincludes theA.hpp form of the file without regard for whether implicit or
explicit instantiation is enabled or not (i.e. whetherHAVETHYRAEXPLICIT INSTANTIATION is
defined or not defined).

The 100% bullet-proof rules for breaking up template code like this are:

– All header-like declarations that would go into an ordinarynon-template*.hpp header file go
into SomeClass decl.hpp including class declarations and inline function definitions.

– All implementation code that would go into an ordinary non-template*.cpp source file go into
SomeClass def.hpp including class member definitions and non-member functiondefinitions.

– Always includeSomeOtherClasss decl.hpp in theSomeClass decl.hpp file if there is any
chance that a circular dependency may exist between the two typesSomeOtherClasss and
SomeClass . Otherwise, if there is no chance of a circular dependence then the header
SomeOtherClasss.hpp should be included (instead of the possibledecl.hpp form). If the
two classes are in different libraries then there is no chance of a circular type dependency
(because well designed software does not allow this [6]).

– If SomeClass decl.hpp includesSomeOtherClass decl.hpp , thenSomeClass def.hpp
must includeSomeOtherClass.hpp . This is needed in order for implicit instantiation to work
correctly.

18

– The header fileSomeClass.hpp is designed to be included by general clients and either
includes onlySomeClass decl.hpp or also includesSomeClass def.hpp depending on if
implicit or explicit instantiation is being used. When explicit instantiation is being used the file
SomeClass def.hpp is hidden from general clients and changes in it do not require
recompilation of client code. The fileSomeClass.hpp can (and should) be automatically
configured by the CMake build system (see examples in thyra/src/CMakeLists.txt).

– All required instantiations must be provided in the fileSomeClass.cpp . For standard scalar
types (e.g.double , float , std::complex<double> , std::complex<float> , etc.) the
standard macroTEUCHOSCLASS TEMPLATEINSTANT SCALARTYPES(...) is provided which
is set at configure time to determine the desired/required explicit instantiations. More general
instantiations can also be performed by defining a macro in the fileSomeClass def.hpp file
and then instantiating this macro using the helper macro
TEUCHOSMACROTEMPLATEINSTANT SCALARTYPES(...) (See examples from real Thyra
source code).

If one follows the above guidelines, one will never have dependency ordering problems with
templated code. The partitioning the template code into thefour files
SomeClass[decl, def].[hpp,cpp] gives template code all the desirable compilation properties
of non-template code. That is, changes to the implementation of SomeClass only require the
recompilation of the source fileSomeClass.cpp and not any other source files. Also, the amount of
code that a C++ compiler has to see to compile any single*.cpp file is much less when explicit
instantiation is enabled and this can massively speed up first-time compilation. Overall, explicit
instantiation can massively speed up first-time compilation and later recompilations as code is
modified.

5.2 Specification of data members and passing and returning objects from functions

The guidelines for specifying local variables and data members, passing objects to and from functions, and
returning objects from functions given in [1] are summarized in Tables 1–6. In general, it is assumed that
arguments passed through the smart pointer typesPtr , RCP, ArrayView , andArrayRCP are non-null by
default. If the argument is allowed to be null, then that mustbe documented in the Doxygen\param field
for that argument.

19

Class Data Members for Value-Type Objects
Data member purpose Data member declaration

non-shared, single, const object const S s ;
non-shared, single, non-const object S s ;
non-shared array of non-const objects Array<S> as ;
shared array of non-const objects RCP<Array<S> > as ;
non-shared statically sized array of non-const objectsTuple<S,N> as ;
shared statically sized array of non-const objects RCP<Tuple<S,N> > as ;
shared fixed-sized array of const objects ArrayRCP<const S> as ;
shared fixed-sized array of non-const objects ArrayRCP<S> as ;

Table 1. Idioms for class data member declarations for value-type ob-
jects.

Class Data Members for Reference-Type Objects
Data member purpose Data member declaration

non-shared or shared, single, const object RCP<const A> a ;
non-shared or shared, single, non-const objectRCP<A> a;
non-shared array of const objects Array<RCP<const A> > aa ;
non-shared array of non-const objects Array<RCP<A> > aa ;
shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;
shared fixed-sized array of non-const objectsArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

Table 2. Idioms for class data member declarations for reference-types
objects.

20

Passing IN Non-Persisting Associations to Value Objects asFunc Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)S s or const S s or const S &s
single, non-changeable object (optional)const Ptr<const S> &s
single, changeable object (required) const Ptr<S> &s or S &s
single, changeable object (optional) const Ptr<S> &s
array of non-changeable objects const ArrayView<const S> &as
array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as FuncArgs
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst ArrayRCP<const S> &as
array of changeable objects const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst Ptr<ArrayRCP<const S> > &as
array of changeable objects const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objects as Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst Ptr<ArrayView<const S> > &as
array of changeable objects const Ptr<ArrayView<S> > &as

Table 3. Idioms for passing value-type objects to C++ functions.

21

Passing IN Non-Persisting Associations to Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)const A &a
single, non-changeable object (optional)const Ptr<const A> &a
single, changeable object (required) const Ptr<A> &a or A &a
single, changeable object (optional) const Ptr<A> &a
array of non-changeable objects const ArrayView<const Ptr<const A> > &aa
array of changeable objects const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Value)Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a
single, changeable object const RCP<A> &a
array of non-changeable objectsconst ArrayView<const RCP<const A> > &aa
array of changeable objects const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<RCP<const A> > &a
single, changeable object const Ptr<RCP<A> > &a
array of non-changeable objectsconst ArrayView<RCP<const A> > &aa
array of changeable objects const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<Ptr<const A> > &a
single, changeable object const Ptr<Ptr<A> > &a
array of non-changeable objectsconst ArrayView<Ptr<const A> > &aa
array of changeable objects const ArrayView<Ptr<A> > &aa

Table 4. Idioms for passing reference-type objects to C++ functions.

22

Returning Non-Persisting Associations to Value Objects
Purpose Return Type Declaration

Single copied object (return by value) S
Single non-changeable object (required)const S&
Single non-changeable object (optional)Ptr<const S>
Single changeable object (required) S&
Single changeable object (optional) Ptr<S>
Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Table 5. Idioms for returning value-type objects from C++ functions.

23

Returning Non-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single cloned object RCP<A>
Single non-changeable object (required)const A&
Single non-changeable object (optional)Ptr<const A>
Single changeable object (required) A&
Single changeable object (optional) Ptr<A>
Array of non-changeable objects ArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)Objects
Purpose Return Type Declaration

Single non-changeable object RCP<const A>
Single changeable object RCP<A>
Array of non-changeable objectsArrayView<const RCP<const A> >
Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single non-changeable object Ptr<const A>
Single changeable object Ptr<A>
Array of non-changeable objectsArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Table 6. Idioms for returning reference-type objects from C++ func-
tions.

24

6 Formatting of source code

At the minimum, source code should be formatted consistently within a single file or a set of tightly
coupled files [10, Item 0]. Ideally, source code should be formatted consistently enough across a code
project so as not to cause undue difficulty in shared maintenance and in performing code reviews [7]. Some
consistency in formatting helps and to facilitate multipleownership and shared development of a collection
of software, such as in Extreme Programming (XP) [2] (see Appendix E for an outline of the arguments for
adopting a consistent code formatting style). By “formatting” we generally refer to the use of white-space
in the line-to-line formatting of the program or in the ordering of lines of code such that the meaning of the
program to the compiler is unchanged3 The handling of indentation styles can largely be automated4 which
allows individual developers to work with any style they would like for files that they create but also makes
it easy for developers to edit files created by other developers and keep to their styles as well. Appendix F
gives some guidelines for how individuals should conduct themselves where more than one code
formatting style is in use within a project.

Our main goal in this section is to try to provide reasonable recommendations for those formatting issues
that are largely a matter of style and personal preference but at the same time affect the overall readability
of the code and promote pair programming and joint ownershipof code [2]. The formatting and indentation
guidelines presented here are largely consistent with the recommendations in [7, Chapter 31] and try to
reduce the amount of “right drift” that can occur with some common formatting and indentation styles.

The indentation guidelines outlined below can be largely automatically supported by Emacs and are used
by the custom style “thyra” defined in the Emacs package file cc-thyra-styles.el5. Other custom styles can
also be added to this file and used as well. Any of these styles can be listed in each source file and therefore
anyone using Emacs can automatically use a particular indentation style without having to fight the editor
to manually reformat code to abide by a foreign style.

6.1 General formatting source code principles (FSCP)

Some general principles of good formatting, based on the discussion in [7, Section 31.1], are:

• FSCP 1: Formatting should accurately and consistently show the logical structure of the code: It is
somewhat subjective what formatting styles “show the logical structure” of code but McConnell
makes some good arguments for some styles over others. However, it is up the group of
programmers to decide as a group what style items “show the logical structure”.

• FSCP 2: Formatting should improve the readability of the code for most people: There are specific
studies cited in [7, Chapter 31] that provide good evidence to prefer some styles over others.

• FSCP 3: Formatted code should retain its formatting well when modified; especially for those
modifications performed by automated tools: Changing one line of code should not require changes
to other lines of code to maintain the formatting style.

3While technically changing the name of a class, function or variable changes the meaning of a program, if name changes are
done in such a way as to avoid name collisions, then naming conventions also do not affect the meaning of the program and are
therefore very much related to other formatting issues suchas the treatment of “white-space”.

4Emacs supports multiple file-specific formatting styles forC++ and tools like Artistic Style [4] can format source files from
the command line. A flavor of thevi editor may also support indentation styles.

5SeeTrilinos/packages/thyra/emacs/README for a description of the “thyra” Emacs style

25

• FSCP 4: Formatting style should follow the most common idiom unlessone of the above principles
are violated: When there is no good technical argument for one formattingstyle choice over another,
then the style choice that is the most common should be used6. This is not advocated per-say in [7,
Chapter 31] but it is a good idea in general to follow popular idioms when there are several equally
good choices and therefore the decision is arbitrary. However, not selecting a single style choice can
create artificial complexity in the code from irregularity in formatting.

6.2 Specific guidelines for formatting source code (FSC)

Below, specific recommendations are spelled out that try to conform to common practices but also try to
avoid excessive “right drift”:

• FSC 1: The formatting style in any single file or group of closely related files should be the same:
Consistent formatting includes the placement of braces, the number spaces to indent etc.
Justification: This is recommended in [10, Item 0].

• FSC 2: Try to keep all text within the first 80 character columns: Keeping most of the source code
within the first 80 character columns helps to make the code more readable and helps to facilitate
side-by-side two-column editing and comparisons of sourcecode. Most of the style and indentation
guidelines described below help to avoid code that extends beyond the 80th column too rapidly.
Justification: “Studies show that up to ten-word text widths are optimal for eye tracking” [10, Item
0]. Also, some developers are still stuck with 80 column wideterminals.

• FSC 3: Indent with spaces and not tabs (two spaces by default): The amount of spaces to use per
indentation level is up to the individual developer but an indentation of onlytwo spacesis
recommended (and is set in the ‘Emacs ‘thyra” indentation style). A study showed that an
indentation offset of two-to-four spaces was optimal for code reading comprehension [7, Section
31.2]. Whatever indentation amount is used, it should be consistent in at least each source and header
file [10, Item 0] (which can be enforced using a custom Emacs indentation style). Emacs by default
will put in a tab when the tab-width is equal to the number of indentation spaces. Emacs can be told
to always use spaces instead of tabs by setting:

(setq indent-tabs-mode nil)

in the indentation style (as is done in the “thyra” style). However, it is easy to support different
preferences for the amount of spaces to indent by using a user-defined indentation style for Emacs
(sorryvi users).

Justification: “Some teams legitimately choose to ban tabs ... when misused, turn indenting into
out-denting and non-denting.” [10, Item 0].

• FSC 4: Use two vertical spaces to separate class declarations, function definitions, namespace
enclosure bounds, and other such major entries in a file.

Justification: Using two black spaces is preferable to long lines with somefiller like ’-’ or ’=’ or other
separators and they clearly separate the entities and are easier to maintain (see [7, Section 31.8]).

6The measure of the commonality of a particular style choice can be determined according to a local software development
community or the larger developer community.

26

• FSC 5: Do not indent source code inside of namespace enclosures, instead use commented end
braces: Indenting for namespace enclosures results in unnecessary, and in some cases excessive,
indentation. Instead, for example, use:

namespace MyNameSpace {

namespace MyInnerNamespace {

class SomeClass {..};

void someFunc(...) {...}

} // namespace MyInnerNamespace

} // namespace MyNameSpace

Above, note that two vertical blank lines are used between each of the major entities (see above
item).

Justification: While indentation within namespaces is helpful in small example code fragments, it
provides little help in showing namespace structure in morerealistic code. The use of commented
end braces is generally sufficient to show namespace structure and will not result in excessively
indented code. In addition, typically, each file will only contain code from one (or more nested)
namespace and therefore indenting for namespaces providesno useful information. Not indenting for
namespace enclosures is also consistent with the “ansi”, the “kr”, and the “linux” styles as defined by
Artistic Style [4].

• FSC 6: C++ class declarations should generally be laid out withpublicmembers coming before
protectedmembers coming beforeprivatemembers and indented as shown in Figure 1.

Justification: This ordering of sections and data members is quite common [7, Section 31.8]. Above,
we show private member functions after private data memberssince private data members are more
prominent and more common in the class implementations thanare private member functions. Also,
private types (where typedefs are most common) must be listed before they are used in the
declaration of the private data members. Note that public types used in public member functions
must be listed above (or at least forward declared) before the public member functions that use them.

• FSC 7: List short function prototypes on one line and longer prototypes on multiple lines, indenting
arguments one unit: Below, guidelines for formatting short function prototypes and long prototypes
are given. These guidelines seek to produce function prototypes that are fairly tight (i.e. not too
much white-space explosion), are robust to modifications, and keep code inside of the 80th character
column. This indentation style can (and should) also be applied to function definitions and function
calls.

– List short function prototypes on one line if possible: For example,

ReturnType someFunction(int arg = 0);

27

class SomeClass {

// Friends

friend void foo();

friend class SomeOtherClass;

public:

// Public types

typedef int integral_type;

// Public member functions

void func1();

protected:

// Protected member functions

void func2();

private:

// Private types

typedef std::vector<int> int_array_t;

// Private data members

int data1_;
int_array_t array1_;

// Private member functions

void func3();

};

Figure 1. Example of suggested layout of a C++ class declaration com-
plete with ordering of sections, indentation, and line spacing.

28

or

ReturnType someFunction(int arg=0);

or some other style for white-space within ’(...)’ but the opening ’(’ should come directly after
the function name in all cases.

– For longer prototypes, indent arguments on continuation lines one unit: Function prototypes
that cannot approximately fit on a single line in the first 80 character columns should have the
function arguments listed starting on the second line with one unit of indentation (e.g. two
spaces) from the function return type and function name line. For example, several different
valid formats for a longer function prototype are:

ReturnType someFunction(
int arg1,
bool arg2,
const ArrayView<double> &arg3,
const std::string &arg4 = ""
);

or

ReturnType someFunction(
int arg1, bool arg2, const ArrayView<double> &arg3,
const std::string &arg4 = ""
);

or

ReturnType someFunction(
int arg1, bool arg2, const ArrayView<double> &arg3,
const std::string &arg4 = "");

or

ReturnType someFunction(int arg1, bool arg2,
const ArrayView<double> &arg3, const std::string &arg4 = " ");

As shown above, the function arguments can be listed separately on different lines, or in groups
on sets of lines. The arguments can begin on the same line as the type + function name line or
can start on the next line. The ending parenthesis ’)’ can appear on the same line as the last line
of arguments or can appear alone on the last line. Other formats are possible also and can be
appropriate in different situations.

Justification: See [7, Section 31.1].

– Return types can be listed on same line as the function name unless the line is too long: A
function prototype’s return type should appear on the same line as the function name unless it is
excessively long and would result in the return type + function name line to extend past the
80th character column. When the return type + function name is too long, then it can be listed
on separate lines with no indent, for example, as:

29

Teuchos::RCP<ReturnType>
someVeryLongAndVeryImportantFunction(

int arg1, bool arg2, const ArrayView<double> &arg3,
const std::string &arg4 = ""
);

However, listing the function return type on a separate lineeven in cases of shorter prototypes
is also okay.

• FSC 8: Order the definitions of C++ entities the same as the order of the declarations of those
entities: For example, one should order the definitions of a set of functions the same as the ordering
of the declarations. Maintaining the ordering of definitions and declarations makes the code more
readable and more maintainable. For example, if the function definitions are ordered the same as the
declarations, it can be easy to spot that a function definition is missing (i.e. which could be the cause
of the link error that you are seeing).

• FSC 9: Use “modified K&R” or “ANSI” style for the placement of braces and indentation of control
structures: Two basic styles of brace placement and indentation in control structures are recommend
here. The first general style is a modification of the K&R style[4] where the brace comes
immediately after the control statement on the same line shown as:

// Modified K&R Style (recommended)
if (someCondition) {

...
}
else {

...
}

Note that the pure K&R style (for example, as defined by Artistic Style [4]) shown as:

// Pure K&R Style (*NOT* recommended)
if (someCondition) {

...
} else {

...
}

is not recommended. Even through pure K&R style meets McConnell’s strict pictorial definition of
“emulation of pure block style” (i.e. the equivalent to pureblock format such as in Visual Basic)
which he says is good, he actually recommends the above modified K&R style (as do we since we
feel it is more readable).

The second general style that is recommended is the “ANSI” style[4] where the opening brace begins
flush on the next line from the control statement shown as:

// ANSI Style (recommended)
if (someCondition)
{

...

30

}
else
{

...
}

Both the modified K&R and the ANSI styles help to avoid right drift. The modified K&R style
creates tighter code vertically and seems to be preferred bymany communities and authors but
variations of the ANSI style are also very common. Note that the ANSI style seems to have a distinct
advantage in cases where the control statement is continuedover multiple lines. For example, the
modified K&R style with line continuations looks like:

// Modified K&R Style with line continuations (*NOT* recomm ended)
if (someLongCondition &&

anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine) {
// Statements
...

}

and it is hard to argue that this shows the logical structure of code. One could argue that the ANSI
style which looks like:

// ANSI Style with line continuations (recommended)
if (someLongCondition &&

anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine)

{
// Statements
...

}

better shows the logical structure of the code in clearly separating the control structure logic from the
inner block of code.

Note that while the modified K&R style meets McConnell’s blessing of “showing the logical
structure of code” where he refers to it as “emulating pure block” format that he cites the ANSI
styles as violating this principle [7, Section 31.1]. However, it is somewhat subjective what styles
“show the logical structure” and McConnell himself seems tocontradict himself at times (see the
formatting of if/else statements below).

When choosing between one of these styles, try to be consistent at least within a single file.
However, for control statements that extend over a single line, prefer the “ANSI” style.

Below, the application of the modified K&R style and the ANSI styles are shown in the context of
several different types of C++ loop and control structures.

– Formatting if/else if/else statements: When applied to if statements, the two recommended
styles are:

31

// Modified K&R Style (recommended)
if (someCondition) {

...
}
else if (someOtherCondition) {

...
}
else {

...
}

and:

// ANSI Style (recommended)
if (someCondition)
{

...
}
else if (someOtherCondition)
{

...
}
else
{

...
}

– Formatting switch/case statements: The two recommended formats for switch/case statements
are:

// Modified K&R Style (recommended)
switch (someEnumValue) {

case ENUM_VALUE1:
...
break;

case ENUM_VALUE2:
...
break;

default:
TEST_FOR_EXCEPT("Should never get there!");

}

and

// ANSI Style (recommended)
switch (someEnumValue)
{

case ENUM_VALUE1:
...
break;

case ENUM_VALUE2:
...

32

break;
default:

TEST_FOR_EXCEPT("Should never get there!");
}

As shown above, every switch structure should have adefault case that throws an exception
(see “use the default clause to detect errors” in [7, Section15.1]).

Also, if needed, the case blocks can be wrapped in braces as:

// Modified K&R Style (recommended)
switch (someEnumValue) {

case ENUM_VALUE1: {
...
break;

}
case ENUM_VALUE2: {

...
break;

}
default: {

TEST_FOR_EXCEPT("Should never get there!");
}

}

and

// ANSI Style (recommended)
switch (someEnumValue)
{

case ENUM_VALUE1:
{

...
break;

}
case ENUM_VALUE2:
{

...
break;

}
default:
{

TEST_FOR_EXCEPT("Should never get there!");
}

}

– Formatting for and while loops: The two recommended styles for formatting for loops are:

// Modified K&R Style (recommended)
for (int i = 0; i < size; ++i) {

...
}

33

and:

// ANSI Style (recommended)
for (int i = 0; i < size; ++i)
{

...
}

Note that line continuations are often needed for a for loopscontrol structure, especially if long
type names or variable names are used. In these cases, the ANSI style is more highly
recommended as:

// ANSI Style (recommended)
for (

std::vector<SomeVeryLongClassName>::const_iterator i tr = longVarName.begin();
itr != someLongVariableName.end();
++itr)

{
...

}

Similarly, while loops should be formatted as:

// Modified K&R Style (recommended)
while (someCondition) {

...
}

or:

// ANSI Style (recommended)
while (someCondition)
{

...
}

34

7 Doxygen documentation guidelines

In this section, a set of reasonable guidelines are stated for writing Doxygen (and plain old) documentation
for classes, functions, etc. that makes the specification clear but is not too verbose or hard to maintain.
While other types of higher-level documentation are also needed such as design documents and tutorials,
guidelines for these other types of higher-level documentation are not covered here.

7.1 General principles for function and class level documentation (DOXP)

• DOXP 1: The level of documentation should vary depending on the prominence and/or the role of
the software entity or collection: Important interfaces or widely disseminated concrete classes or
functions require an appropriate level of precise documentation. Concrete implementations that are
less widely disseminated can provide less (or none in some cases) Doxygen documentation if the
implementation code itself is sufficiently easy to understand. However, major parts of an
implementation should have at least some plain old (i.e. non-Doxygen) documentation to describe
the basics of what is going on.

• DOXP 2: Important abstract interfaces must be fully specified independent of any single concrete
implementation (i.e. preconditions, postconditions, invariants, etc.): In the case of important abstract
interfaces, the full specification of behavior for the compliant objects (i.e. invariants, preconditions,
postconditions) must be clearly stated [10, Item 69]. In some cases, this must be done completely
within the Doxygen documentation for the interface. In other cases, standard unit testing code can be
used to help specify the behavior of the interface. In fact, compiled and verified unit testing code
may be superior to standard Doxygen documentation since it cannot be ignored and cannot become
invalid. On the other hand, it may be difficult for readers to wade through unit testing code to find the
specification of behavior and therefore both Doxygen documentation and unit testing code should be
used to provide the fullest benefit. Also, Doxygen documentation can automatically include bits and
pieces of compiled and tested code using the\dontinclude and related Doxygen commands.

• DOXP 3: Behavior of ”user level” interfaces must be completely specified by the Doxygen
documentation and/or other higher-level documentation (i.e. preconditions, postconditions,
invariants, etc.): This item is an amendment to the above item as a special case for “user” interfaces.
A ”user” could be someone that simply writes client code to the interface or one that provides
implementations of the interface or both. User’s should notbe expected to study unit testing code to
figure out the preconditions and/or postconditions for a function call.

• DOXP 4: Wrong documentation is (almost) worse than no documentation at all: Documentation
must be maintained as code is changed and therefore excessive or unnecessary documentation that is
not rigorously maintained degrades the overall quality of code. However, documentation with small
errors is generally better than no documentation at all.

• DOXP 5: The same documentation should not be repeated in more than one place if possible: We
should strive for a single source for documentation for an entity and not repeat the same
documentation over and over again. This is critical to insure that the documentation can be
successfully maintained.

• DOXP 6: The documentation should maintain itself as much as possible and be testable as much as
possible: Any significant fragments of code that are shown in the Doxygen-generated HTML

35

documentation should come from compiled and tested code. This can be accomplished by using the
\dontinclude or related Doxygen command to read in code fragments automatically. In this way,
the compiler and our test suite can be used to help verify the code fragments in our Doxygen
documentation.

7.2 Specific Doxygen documentation principles (DOX)

Now that some of the general goals for our Doxygen documentation have been presented, more detailed
guidelines are given below.

• DOX 1: Write Doxygen documentation directly in header files with documented entities: Writing
Doxygen documentation comments directly attached to the classes, functions and other entities helps
make the documentation as tightly tied to the code as possible (see “Keep comments close to the
code they describe” in [7, Section 32.5]). This has the unfortunate side-effect of requiring complete
recompilations whenever documentation is modified but the overall benefits are usually worth the
disadvantages. Note that the Doxygen documentation can be stripped out of Doxygen-generated
hyper-linked versions of the code, leaving clean C++ code without the clutter of detailed
documentation. Therefore, developers should browse Doxygen-generated source code instead of the
source code directly when looking at the code and performingcode reviews.

• DOX 2: Use a centralized set of definitions for common arguments whenever possible: Use clear and
consistent naming of arguments in multiple functions (within the same class and across as many
classes and functions as makes sense) and provide a centralized definition of these arguments if
possible to avoid repeating detailed descriptions in each individual function’s documentation. This
helps to avoid duplicate documentation that is likely not tobe maintained correctly. In the case of
classes, this means providing some common definitions in themain “detailed” documentation
section for the class. In the case of nonmember functions, this might involve a common Doxygen
group or module (i.e. using the\defgroup command) for the set of functions. In the case of
collections of nonmember functions, it may be difficult to expect readers to find the common
definitions, but links to the common documentation are possible using a variety of approaches.

• DOX 3: Provide typical pre- and postconditions along with the documentation for common
arguments whenever possible: For common arguments that are shared among many functions,define
the most common preconditions for them in a central place andavoid listing them on a
function-by-function basis unless they change for an individual function. For a C++ class, place
descriptions for these common arguments in the main class documentation under a\section named
“Common Function Arguments and Pre/Postconditions”. Onlyinclude preconditions for these
arguments in specific function documentation sections if itis different from the most common
preconditions.

• DOX 4: Add a\brief description for every entity that should be seen by the user: The\brief
field is used to provide the short one-line documentation string that is included in the function
summary section of classes, groups, namespaces etc. Even ifno text documentation is
needed/wanted, add an empty

/** \brief . */
void someFunction();

36

/** \brief Apply the linear operator to a multi-vector : <tt> Y =
* alpha*op(M)*X + beta*Y</tt>.
*
* \param M_trans [in] Determines whether the operator is app lied or the
* adjoint for <tt>op(M)</tt>.
*
* \param X [in] The right hand side multi-vector.
*
* \param Y [in/out] The target multi-vector being transform ed. When
* <tt>beta==0.0</tt>, this multi-vector can have uninitia lized elements.
*
* \param alpha [in] Scalar multiplying <tt>M</tt>, where <t t>M==*this</tt>.
* The default value of <tt>alpha</tt> is </tt>1.0</tt>
*
* \param beta [in] The multiplier for the target multi-vecto r <tt>Y</tt>.
* The default value of <tt>beta</tt> is <tt>0.0</tt>.
*
* Preconditions:
*
* <tt>nonnull(this->domain()) && nonnull(this->ran ge())</tt>
*
* <tt>this->opSupported(M_trans)==true</tt> (thro w
* <tt>Exceptions::OpNotSupported</tt>)
*
* <tt>X.range()->isCompatible(*op(this)->domain()) == true</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)
*
* <tt>Y->range()->isCompatible(*op(this)->range()) == true</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)
*
* <tt>Y->domain()->isCompatible(*X.domain()) == tr ue</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)
*
* <tt>Y</tt> can not alias <tt>X</tt>. It is up to the cli ent to
* ensure that <tt>Y</tt> and <tt>X</tt> are distinct since i n general this
* can not be verified by the implementation until, perhaps, i t is too late.
* If possible, an exception will be thrown if aliasing is dete cted.
*
*
*
* Postconditions:
* Is it not obvious? After the function returns the multi -vector <tt>Y</tt>
* is transformed as indicated above.
*
*/

void apply(
const EOpTransp M_trans,
const MultiVectorBase<Scalar> &X,
const Ptr<MultiVectorBase<Scalar> > &Y,
const Scalar alpha,
const Scalar beta
) const;

Figure 2. Example of more complete doxygen documentation for a
function. 37

comment so that Doxygen will include the class, function, orother entity in the HTML
documentation. Note that this is important when the Doxygenconfiguration optionEXTRACTALL is
set toNO.

• DOX 5: Add a\param field for all of the arguments or none of the the arguments in a function; do
not define partial\param field lists: All arguments should be listed in\param fields with at least the
[in], [out], or [in/out] specifications and these should have at least a very short description. Or, if the
function arguments are clear and trivial (and/or have already been defined in the common
documentation section), then no\param fields for any of the arguments should be included at all. If
any of the arguments in a function’s documentation are listed in \param fields then all arguments
should be listed in\param fields.

• DOX 6: Only add a\returns field if necessary and if so refer to the return object as
returnVal: Don’t add a\returns description of the return value if it is already clearly specified
in the\brief description of the function. However, if the nature of the return value is at all complex,
then include a\returns field to describe it. When referring to the return object, refer to it as
returnVal . By consistently using the identifierreturnVal for the return value, user’s will
immediately know what this is referring to.

• DOX 7: Prefer specifying postconditions for output arguments in their \param field; otherwise
specify their postconditions in the ’postconditions’ list: The postconditions for output arguments can
be listed directly in the\param field for the argument if they only involve just that argumentin a
fairly simple way. Otherwise, if the postconditions are more complex or involve multiple arguments
in order to specify, then they can be listed in the postconditions list. It may be difficult to objectively
determine the best place to list the postconditions for an output argument.

• DOX 8: Order the documentation fields in function documentation as\brief, \param,
Preconditions, Postconditions,\returns, then detailed documentation; omitting those components
that do not apply: A consistent ordering of sections of documentation for a function makes it easier
for readers to find what they are looking for.

• DOX 9: If possible, try to use\relates to associate nonmember functions with a single class: If a
nonmember function is most closely related to a single class, then use the\relates field to cause
the documentation for the function to be listed with the classes documentation. This makes it easier
for readers to find out everything that they can do with a classobject (or set of class objects) just by
looking at a single HTML page and a single summary list of functions (which includes member and
nonmember related functions).

• DOX 10: Provide detailed documentation for only the initial declaration of a virtual function: Only
provide detailed documentation of the initial declarationof a virtual function in the class where it is
first defined asvirtual . In general, documentation should not be included for the overrides of
virtual functions in derived classes. Doxygen automatically puts in a link to the original virtual
function in the base class so readers are just one click away for seeing the detailed documentation.
Always add an empty

/** \brief . */
void someFunction();

comment for every class and every function that should be included in the HTML documentation but
where no text documentation is wanted or needed.

38

• DOX 11: Aggregate the overrides of virtual functions into groups according their base class: For
example, the overrides of the virtual functions for theTeuchos::ParameterListAcceptor
interface would look like:

class SomeClass : public Teuchos::ParameterListAcceptor {
public:

...

/** \name Overriden from Teuchos::ParameterListAccpetor */
//@{
/** \brief . */
void setParameterList(

Teuchos::RCP<Teuchos::ParameterList> const& paramList);
/** \brief . */
Teuchos::RCP<Teuchos::ParameterList> getParameterLis t();
/** \brief . */
Teuchos::RCP<Teuchos::ParameterList> unsetParameterL ist();
/** \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getParamet erList() const;
/** \brief . */
Teuchos::RCP<const Teuchos::ParameterList> getValidPa rameters() const;
//@}

...

};

• DOX 12: Example source code used in Doxygen-generated and other forms of documentation should
be extracted automatically from code that is compiled and tested nightly: Any significant fragment of
example code that is shown in Doxygen HTML documentation or alatex document needs to come
from compiled and tested code that can be updated automatically. These C++ code fragments can be
selectively inserted automatically into Doxygen documentation using the\dontinclude Doxygen
command.

• DOX 13: Sample output should be generated automatically from compiled and tested code: Sample
output included in Doxygen documentation should be generated automatically by the test harness
code and should be written to files that are included in the source directory. The sample output in
these files can then be inserted into the Doxygen HTML documentation automatically using the
\verbinclude Doxygen command. Similar approaches can also be used for latex documentation.

39

References

[1] R. A. Bartlett. Teuchos C++ memory management classes, idioms, and related topics: The complete
reference (a comprehensive strategy for safe and efficient memory management in C++ for high
performance computing). Technical report SAND2010-2234,Sandia National Laboratories,
Albuquerque, New Mexico 87185 and Livermore, California 94550, 2010.

[2] Kent Beck.Extreme Programming Explained: Embrace Change. Addison-Wesley Professional,
2000.

[3] Kent Beck and Cynthia Andres.Extreme Programming Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

[4] T. Davidson and J. Pattee. Artistic style 1.20.http://astyle.sourceforge.net .

[5] Lockheed Martin. Joint strike fighter air vehicle c++ coding standards for the system development and
demonstration program. Technical report 2RDU00001 Rev C, Lockheed Martin Corporation, 2005.

[6] R. Martin. Agile Software Development (Principles, Patterns, and Practices). Prentice Hall, 2003.

[7] S. McConnell.Code Complete: Second Edition. Microsoft Press, 2004.

[8] S. Meyers.Effective C++: Third Edition. Addison Wesley, 2005.

[9] B. Stroustrup.The C++ Programming Language, special edition. Addison-Wesley, New York, 1997.

[10] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules, Guidelines and Best Practices.
Addison Wesley, 2005.

40

A Summary of guidelines

NC (Naming conventions)

• NC 1: Capitalize C++ class and struct names asSomeClass.

• NC 2: Capitalize C++ namespace names asSomeNameSpace.

• NC 3: C++ enum type names should begin withE asESomeEnum and enum values should use all
caps and scope context asSOME ENUM VALUE.

• NC 4: C++ object instance identifier names should begin with a lower-case letter assomeObject.

• NC 5: C++ class data member names should begin with a lower-case letter and end with an
underscore assomeDataMember .

• NC 6: C++ function names should begin with a lower-case letter assomeFunction(...).

• NC 7: Name C++ pure abstract base classesBlobBase, default implementation base classes
BlobDefaultBase, and default concrete implementation classesDefaultTypeABlob.

• NC 8: Prefer to name const and non-const access functions asgetPart() and
getNonconstPart(), respectively.

NOSF (Naming and organization of source files)

• NOSF 1: Use file extension names*.hpp (C++ header),*.cpp (C++ source),*.h (C header),
and*.c (C source).

• NOSF 2: Include only one major C++ class with supporting code per header and source file with
name(s)NameSpaceA InnerNamespace SomeClass.[hpp,cpp].

• NOSF 3: Use internal include guards in all header files.

GCG (General coding guidelines)

• Error handling

– GCG 1: UseTEST FOR EXCEPTION(...),TEUCHOS ASSERT(...) and related
macros for reporting all errors, even developer programming errors.

• Memory management

– GCG 2: Avoid the use of raw C++ pointers in all but the very specialized siturations.

– GCG 3: Usestd::string instead ofchar* or const char*

– GCG 4: UseTeuchos::Ptr as function arguments and return types in the place of raw
C++ pointers to single objects for non-persisting and semi-persisting associations.

41

– GCG 5: UseTeuchos::RCP for memory management of single dynamically allocated
objects and for handling persisting associations.

– GCG 6: Use non-member constructors for all reference-type classes to force dynamic
allocation returning strong owningTeuchos::RCP objects.

– GCG 7: Specify “generalized view” semantics for all views of abstract objects.

– GCG 8: UseTeuchos::ArrayViewas function arguments and return types in the place of
pointers into raw arrays or other container classes for non-persisting and semi-persisting
associations and where the array does not need to be resized.

– GCG 9: UseTeuchos::Array in place ofstd::vector as a contiguous general
purpose data container.

– GCG 10: UseTeuchos::ArrayRCP for memory management of dynamically allocated
objects stored in contiguous arrays of data and for persisting associations involving contiguous
arrays.

– GCG 11: Always returnPtr, RCP, ArrayView, andArrayRCP smart pointer objects by
value, never by reference.

– GCG 12: Only return a raw C++ reference from a function for non-persisting associaitons and
use the reference and discard it in the same same statement.

– GCG 13: Return onlyPtr andArrayView objects by value to establish semi-persisting
associations; never use a raw C++ reference for a semi-persisting association.

– GCG 14: When raw C++ pointers must be exposed (i.e., due to interfacing with non-compliant
code), minimize the amount of code exposed to the raw pointer.

• Object Control

– GCG 15: Accept user options at runtime through aTeuchos::ParameterListobject by
deriving from theTeuchos::ParameterListAcceptor interface.

– GCG 16: Fully validate all parameters and sublists in accepted
Teuchos::ParameterListobjects usingvalidatePamaters(...) and other
means.

• Object Introspection

– GCG 17: Always send output to some generalstd::ostream object; Never send output
directly tostd::cout or std::cerr; Never print output withprint(...) or
printf(...).

∗ Prefer to print output through aTeuchos::FancyOStreamobject instead of through
a barestd::ostream object to more easily produce indented formatted output.

∗ Derive fromTeuchos::Describableand implement the functions
description() anddescribe() to allow clients to print the current state of an
object.

∗ Derive fromTeuchos::VerboseObjectand print to*this->getOStream() to
give information about what an object is doing.

∗ As a last resort, always prefer printing to

*Teuchos::VerboseObjectBase::getDefaultOStream() instead of
std::cout or std::cerr.

42

• Miscellaneous coding guidelines

– GCG 18: Prefer to explicitly specify template arguments in a template function call to avoid
protability problems and enable implicit covnersions of input arguments.

– GCG 19: Use the template functionTeuchos::as<T to>(T from) for all conversion of
value data types that may result in loss of precision or in an incorrect conversion.

– GCG 20: Use namespace enclosure for the definition of C++ class members.

– GCG 21: Use explicit namespace qualification for the definition of all nonmember C++
functions.

– GCG 22: For general functions, prefer to list function arguments inthe order of input,
input/output, output, and finally optional arguments with default values.

– GCG 23: For non-member object functions, list the object as the firstargument passed in as a
const reference or non-const reference.

– GCG 24: Preferenums tobools as formal function arguments when conversion mistakes are
likely.

– GCG 25: Avoid overloading virtual functions.

– GCG 26: Avoid overloading functions on different smart pointer types (e.g.,RCP, Ptr, etc.).

– GCG 27: Include only standard C++ headers<cX>, not standard C headers<X.h>, and
avoid allusing namespace std directives.

– GCG 28: Break up templated code into four filesSomeClass decl.hpp,
SomeClass def.hpp, SomeClass.hpp, andSomeClass.cpp to support both implicit
and explicit instantiation, minimize recompilation, and avoid problems in mutually dependent
(i.e. circular) declarations.

FSCP(General principles for formatting of source code)

• FSCP 1: Formatting should accurately and consistently show the logical structure of the code.

• FSCP 2: Formatting should improve the readability of the code for most people.

• FSCP 3: Formatted code should retain its formatting well when modified; especially for those
modifications performed by automated tools.

• FSCP 4: Formatting style should follow the most common idiom unlessone of the above principles
are violated.

FSC (Specific source code formatting principles)

• FSC 1: The formatting style in any single file or group of closely related files should be the same.

• FSC 2: Try to keep all text within the first 80 character columns.

• FSC 3: Indent with spaces and not tabs (two spaces by default).

• FSC 4: Use two vertical spaces to separate class declarations, function definitions, namespace
enclosure bounds, and other such major entries in a file.

43

• FSC 5: Do not indent source code inside of namespace enclosures, instead use commented end
braces.

• FSC 6: C++ class declarations should generally be laid out withpublicmembers coming before
protectedmembers coming beforeprivatemembers and indented as shown in Figure 1.

• FSC 7: List short function prototypes on one line and longer prototypes on multiple lines, indenting
arguments one unit.

– List short function prototypes on one line if possible.

– For longer prototypes, indent arguments on continuation lines one unit.

– Return types can be listed on same line as the function name unless the line is too long.

• FSC 8: Order the definitions of C++ entities the same as the order of the declarations of those
entities.

• FSC 9: Use “modified K&R” or “ANSI” style for the placement of braces and indentation of control
structures.

DOXP (Goals for function and class level documentation)

• DOXP 1: The level of documentation should vary depending on the prominence and/or the role of
the software entity or collection.

• DOXP 2: Important abstract interfaces must be fully specified independent of any single concrete
implementation (i.e. preconditions, postconditions, invariants, etc.).

• DOXP 3: Behavior of ”user level” interfaces must be completely specified by the Doxygen
documentation and/or other higher-level documentation (i.e. preconditions, postconditions,
invariants, etc.).

• DOXP 4: Wrong documentation is (almost) worse than no documentation at all.

• DOXP 5: The same documentation should not be repeated in more than one place if possible.

• DOXP 6: The documentation should maintain itself as much as possible and be testable as much as
possible.

DOX (General Doxygen documentation principles)

• DOX 1: Write Doxygen documentation directly in header files with documented entities.

• DOX 2: Use a centralized set of definitions for common arguments whenever possible.

• DOX 3: Provide typical pre- and postconditions along with the documentation for common
arguments whenever possible.

• DOX 4: Add a\brief description for every entity that should be seen by the user.

44

• DOX 5: Add a\param field for all of the arguments or none of the the arguments in a function; do
not define partial\param field lists.

• DOX 6: Only add a\returns field if necessary and if so refer to the return object asreturnVal.

• DOX 7: Prefer specifying postconditions for output arguments in their \param field; otherwise
specify their postconditions in the ’postconditions’ list.

• DOX 8: Order the documentation fields in function documentation as\brief, \param,
Preconditions, Postconditions,\returns, then detailed documentation; omitting those components
that do not apply.

• DOX 9: If possible, try to use\relates to associate nonmember functions with a single class.

• DOX 10: Provide detailed documentation for only the initial declaration of a virtual function.

• DOX 11: Aggregate the overrides of virtual functions into groups according their base class.

• DOX 12: Example source code used in Doxygen-generated and other forms of documentation should
be extracted automatically from code that is compiled and tested nightly.

• DOX 13: Sample output should be generated automatically from compiled and tested code.

45

B Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types
Non-persisting (and semi-persisting) Persisting

Associations Associations

single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes
Array class Specific use case

Array<T> Contiguous dynamically sizable, expandable, and contractible arrays
Tuple<T,N> Contiguous statically sized (with sizeN) arrays

Equivalencies for const protection for raw pointers and Teuchos smart pointers types
Description Raw pointer Smart pointer

Basic declaration (non-const obj) typedef A* ptr A RCP<A>
Basic declaration (const obj) typedef const A* ptr const A RCP<const A>

non-const pointer, non-const objectptr A RCP<A>
const pointer, non-const object const ptr A const RCP<A>
non-const pointer, const object ptr const A RCP<const A>
const pointer, const object const ptr const A const RCP<const A>

Summary of operations supported by the basic Teuchos smart pointer types
Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>
Raw pointer-like functionality
Implicit conv derived to base x x
Implicit conv non-const to const x x x x
Dereferenceoperator*() x x x
Member accessoperator->() x x x
operator[](i) x x
operators++, -- , +=(i) , -=(i) x
Other functionality
Reference counting machinery x x
Iterators: begin(), end() x x
ArrayView subviews x x

Basic implicit and explicit supported conversions for Teuchos smart pointer types
Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Implicit conv derived to base x x
Implicit conv non-const to const x x x x
const cast x x x x
static cast x x
dynamic cast x x
reinterpret cast x x

46

Class Data Members for Value-Type Objects
Data member purpose Data member declaration

non-shared, single, const object const S s ;
non-shared, single, non-const object S s ;
non-shared array of non-const objects Array<S> as ;
shared array of non-const objects RCP<Array<S> > as ;
non-shared statically sized array of non-const objectsTuple<S,N> as ;
shared statically sized array of non-const objects RCP<Tuple<S,N> > as ;
shared fixed-sized array of const objects ArrayRCP<const S> as ;
shared fixed-sized array of non-const objects ArrayRCP<S> as ;

Class Data Members for Reference-Type Objects
Data member purpose Data member declaration

non-shared or shared, single, const object RCP<const A> a ;
non-shared or shared, single, non-const objectRCP<A> a;
non-shared array of const objects Array<RCP<const A> > aa ;
non-shared array of non-const objects Array<RCP<A> > aa ;
shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;
shared fixed-sized array of non-const objectsArrayRCP<RCP<const A> > aa ;
“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

47

Passing IN Non-Persisting Associations to Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)const A &a
single, non-changeable object (optional)const Ptr<const A> &a
single, changeable object (required) const Ptr<A> &a or A &a
single, changeable object (optional) const Ptr<A> &a
array of non-changeable objects const ArrayView<const Ptr<const A> > &aa
array of changeable objects const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Value)Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a
single, changeable object const RCP<A> &a
array of non-changeable objectsconst ArrayView<const RCP<const A> > &aa
array of changeable objects const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<RCP<const A> > &a
single, changeable object const Ptr<RCP<A> > &a
array of non-changeable objectsconst ArrayView<RCP<const A> > &aa
array of changeable objects const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Reference (or Value) Objects as Func Args
Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<Ptr<const A> > &a
single, changeable object const Ptr<Ptr<A> > &a
array of non-changeable objectsconst ArrayView<Ptr<const A> > &aa
array of changeable objects const ArrayView<Ptr<A> > &aa

48

Passing IN Non-Persisting Associations to Value Objects asFunc Args
Argument Purpose Formal Argument Declaration

single, non-changeable object (required)S s or const S s or const S &s
single, non-changeable object (optional)const Ptr<const S> &s
single, changeable object (required) const Ptr<S> &s or S &s
single, changeable object (optional) const Ptr<S> &s
array of non-changeable objects const ArrayView<const S> &as
array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as FuncArgs
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst ArrayRCP<const S> &as
array of changeable objects const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst Ptr<ArrayRCP<const S> > &as
array of changeable objects const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objects as Func Args
Argument Purpose Formal Argument Declaration

array of non-changeable objectsconst Ptr<ArrayView<const S> > &as
array of changeable objects const Ptr<ArrayView<S> > &as

49

Returning Non-Persisting Associations to Value Objects
Purpose Return Type Declaration

Single copied object (return by value) S
Single non-changeable object (required)const S&
Single non-changeable object (optional)Ptr<const S>
Single changeable object (required) S&
Single changeable object (optional) Ptr<S>
Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
Purpose Return Type Declaration

Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Non-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single cloned object RCP<A>
Single non-changeable object (required)const A&
Single non-changeable object (optional)Ptr<const A>
Single changeable object (required) A&
Single changeable object (optional) Ptr<A>
Array of non-changeable objects ArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)Objects
Purpose Return Type Declaration

Single non-changeable object RCP<const A>
Single changeable object RCP<A>
Array of non-changeable objectsArrayView<const RCP<const A> >
Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (or Value) Objects
Purpose Return Type Declaration

Single non-changeable object Ptr<const A>
Single changeable object Ptr<A>
Array of non-changeable objectsArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

50

Conversions of data-types for single objects

Conversions of data-types for contiguous arrays

51

Most Common Basic Conversions for Single Object Types
Type To Type From Properties C++ code

RCP<A> A* Ex, Ow rcp(a p) 1

RCP<A> A* Ex, NOw rcp(a p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)
RCP<A> A& Ex, NOw rcpFromUndefRef(a)
RCP<A> Ptr<A> Ex, NOw, DR rcpFromPtr(a)
RCP<A> boost::shared ptr<A> Ex, Ow, DR rcp(a sp)
RCP<const A> RCP<A> Im, Ow, DR RCP<const A>(a rcp)
RCP<Base> RCP<Derived> Im, Ow, DR RCP<Base>(derived rcp)
RCP<const Base> RCP<Derived> Im, Ow, DR RCP<const Base>(derived rcp)
boost::shared ptr<A> RCP<A> Ex, Ow, DR shared pointer(a rcp)

A* RCP<A> Ex, NOw a rcp.getRawPtr() 3

A& RCP<A> Ex, NOw *a rcp 4

Ptr<A> A* Ex, NOw ptr(a p) 2

Ptr<A> A& Ex, NOw outArg(a) 5

Ptr<A> RCP<A> Ex, NOw, DR a rcp.ptr()
Ptr<A> RCP<A> Ex, NOw, DR a rcp()
Ptr<A> RCP<A> Ex, NOw, DR ptrFromRCP(a rcp)
Ptr<const A> Ptr<A> Im, NOw, DR Ptr<const A>(a ptr)
Ptr<Base> Ptr<Derived> Im, NOw, DR Ptr<Base>(derived ptr)
Ptr<const Base> Ptr<Derived> Im, NOw, DR Ptr<const Base>(derived ptr)

A* Ptr<A> Ex, NOw a ptr.getRawPtr() 3

A& Ptr<A> Ex, NOw *a ptr() 4

A* A& Ex, NOw &a 3

A& A* Ex, NOw *a p 3

Types/identifiers:A* a p; A& a; Ptr<A> a ptr ; RCP<A> arcp ; boost::shared ptr<A> a sp ;

Properties: Im = Implicit conversion, Ex = Explicit conversion, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection (NOTE: All conversions are shallow conversions, i.e. copies pointers not
objects.)

1. Constructing an owningRCP from a raw C++ pointer is strictly necessary but must be done with great care
according to the commandments in Appendix??.

2. Constructing a non-owningRCPor Ptr directly from a raw C++ pointer should never be needed in fully com-
pliant code. However, when inter-operating with non-compliant code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation should never be necessary in compliant code but
may be necessary when inter-operating with external code (see Section??).

4. Exposing a raw C++ reference will be common in compliant codebut should only be used for non-persisting
associations.

5. See other helper constructors for passingPtr described in Section??.

52

Most Common Basic Conversions for Contiguous Array Types
Type To Type From Properties C++ code (or impl function)

ArrayRCP<S> S* Sh, Ex, Ow arcp(s p,0,n) 1

ArrayRCP<S> S* Sh, Ex, NOw arcp(s p,0,n,false) 2

ArrayRCP<S> Array<S> Sh, Ex, NOw, DR arcpFromArray(s a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR arcpFromArrayView(s av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR arcp(s a rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR arcp(cs a rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR ArrayRCP::operator()()

S* ArrayRCP<S> Sh, Ex, NOw s arcp.getRawPtr() 3

S& ArrayRCP<S> Sh, Ex, NOw s arcp[i] 4

ArrayView<S> S* Sh, Ex, NOw arrayView(s p,n) 1

ArrayView<S> Array<S> Sh, Im, NOw, DR Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR ArrayRCP::operator()()
ArrayView<const S> const Array<S> Sh, Im, NOw, DR Array::operator ArrayView()
ArrayView<const S> const Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()
ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR ArrayRCP::operator ArrayView()

S* ArrayView<S> Ex, NOw s av.getRawPtr() 3

S& ArrayView<S> Ex, NOw s av[i] 4

Array<S> S* Dp, Ex Array<S>(s p,s p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s v)
Array<S> ArrayView<S> Dp, Im Array<S>(s av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s arcp());
std::vector<S> Array<S> Dp, Ex s a.toVector();

S* Array<S> Ex, NOw s a.getRawPtr() 3

S& Array<S> Ex, NOw s a[i] 4

Types/identifiers:S* s p; ArrayView<S> s av ; ArrayRCP<S> s arcp ; Array<S> s a; Tuple<S,N> s t ;
std::vector<S> s v; RCP<Array<S> > s a rcp ; RCP<const Array<S> > cs a rcp ;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling references not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references not an issue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointer to an owningArrayRCP object directly. Instead, use
the non-member constructorarcp<S>(n) .

2. Constructing a non-owningArrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operating with non-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer should never be necessary in compliant code but may be necessary when inter-
operating with external code (see Section??).

4. Exposing a raw C++ reference will be common in compliant codebut should only be used for non-persisting
associations.

53

C Summary of “C++ Coding Standards” (CPPCS) with amendments

Below, the 101 items in “C++ Coding Standards” by Sutter and Alexandrescu [10] are listed along with
items that are amended or invalidated in the Thyra coding guidelines. General amendments that apply to all
items are:

• Replacetr1::shared ptr with Teuchos::RCP

• Replacestd::vector with Teuchos::Array

• Replaceassert(someTest) with TEUCHOSASSERT(someTest)

Organizational and Policy Issues:

Item 0 : Don’t sweat the small stuff. (Or: Know what not to standardize.)

[Amended, see Section 6 and Appendix E]

Item 1 : Compile cleanly at high warning levels

Item 2 : Use an automated build system.

Item 3 : Use a version control system.

Item 4 : Invest in code reviews

Design Style :

Item 5 : Give one entity one cohesive responsibility.

Item 6 : Correctness, simplicity, and clarity come first.

Item 7 : Know when and how to code for scalability.

Item 8 : Don’t optimize prematurely.

Item 9 : Don’t pessimize prematurely.

Item 10 : Minimize global and shared data.

Item 11 : Hide information.

Item 12 : Know when and how to code for concurrency.

Item 13 : Ensure resources are owned by objects. Use explicit RAII and smart pointers.

Coding Style :

Item 14 : Prefer compile- and link-time errors to run-time errors.

Item 15 : Use const proactively.

Item 16 : Avoid macros.

Item 17 : Avoid magic numbers.

Item 18 : Declare variables as locally as possible.

Item 19 : Always initialize variables.

Item 20 : Avoid long functions. Avoid deep nesting.

54

Item 21 : Avoid initialization dependencies across compilation units.

Item 22 : Minimize definitional dependencies. Avoid cyclic dependencies.

Item 23 : Make header files self-sufficient.

Item 24 : Always write internal #include guards. Never write external #include guards

Functions and Operators :

Item 25 : Take parameters appropriately by value, (smart) pointer,or reference.

[Amendedby Section 5.2]

Item 26 : Preserve natural semantics for overloaded operators.

Item 27 : Prefer the canonical forms of arithmetic and assignment operators.

Item 28 : Prefer the canonical form of ++ and –. Prefer calling the prefix forms.

Item 29 : Consider overloading to avoid implicit type conversions.

Item 30 : Avoid overloading ’&&’, ’ ||’, or ’,’ (comma).

Item 31 : Don’t write code that depends on the order of evaluation of function arguments.

Class Design and Inheritance:

Item 32 : Be clear what kind of class you’re writing.

Item 33 : Prefer minimal classes to monolithic classes.

Item 34 : Prefer composition to inheritance.

Item 35 : Avoid inheriting from classes that were not designed to be base classes.

Item 36 : Prefer providing abstract interfaces.

Item 37 : Public inheritance is substitutability. Inherit, not to reuse, but to be reused.

Item 38 : Practice safe overriding.

Item 39 : Consider making virtual functions nonpublic, and public functions nonvirtual.

Item 40 : Avoid providing implicit conversions.

Item 41 : Make data members private, except in behaviorless aggregates (C-style structs).

Item 42 : Don’t give away your internals.

Item 43 : Pimpl judiciously.

Item 44 : Prefer writing nonmember nonfriend functions.

Item 45 : Always provide new and delete together.

Item 46 : If you provide any class-specific new, provide all of the standard forms (plain, in-place,
and nothrow).

Construction, Destruction, and Copying :

Item 47 : Define and initialize member variables in the same order.

Item 48 : Prefer initialization to assignment in constructors.

Item 49 : Avoid calling virtual functions in constructors and destructors.

Item 50 : Make base class destructors public and virtual, or protected and nonvirtual.

55

Item 51 : Destructors, deallocation, and swap never fail.

Item 52 : Copy and destroy consistently.

Item 53 : Explicitly enable or disable copying.

Item 54 : Avoid slicing. Consider Clone instead of copying in base classes.

Item 55 : Prefer the canonical form of assignment.

Item 56 : Whenever it makes sense, provide a no-fail swap (and provide it correctly).

Namespaces and Modules:

Item 57 : Keep a type and its nonmember function interface in the samenamespace.

Item 58 : Keep types and functions in separate namespaces unless they are specifically intended to
work together.

Item 59 : Don’t write namespace usings in a header file or before an #include.

[Amended, see Appendix D]

Item 60 : Avoid allocating and deallocating memory in different modules.

[Invalidated, see Appendix D]

Item 61 : Don’t define entities with linkage in a header file.

Item 62 : Don’t allow exceptions to propagate across module boundaries.

[Invalidated, see Appendix D]

Item 63 : Use sufficiently portable types in a module’s interface.

[Invalidated, see Appendix D]

Templates and Genericity :

Item 64 : Blend static and dynamic polymorphism judiciously.

Item 65 : Customize intentionally and explicitly.

Item 66 : Don’t specialize function templates.

Item 67 : Don’t write unintentionally nongeneric code.

Error Handling and Exceptions :

Item 68 : Assert liberally to document internal assumptions and invariants

Item 69 : Establish a rational error handling policy, and follow it strictly.

Item 70 : Distinguish between errors and non-errors.

Item 71 : Design and write error-safe code.

Item 72 : Prefer to use exceptions to report errors.

Item 73 : Throw by value, catch by reference.

Item 74 : Report, handle, and translate errors appropriately.

Item 75 : Avoid exception specifications.

STL: Containers :

Item 76 : Use vector by default. Otherwise, choose an appropriate container.

56

Item 77 : Use vector and string instead of arrays.

Item 78 : Use vector (andstring::c str) to exchange data with non-C++ APIs.

Item 79 : Store only values and smart pointers in containers.

Item 80 : Preferpush back to other ways of expanding a sequence.

Item 81 : Prefer range operations to single-element operations.

Item 82 : Use the accepted idioms to really shrink capacity and really erase elements.

STL: Algorithms :

Item 83 : Use a checked STL implementation.

[Amended, With GCC, configure Trilinos withTrilinos ENABLECHECKEDSTL=ON]

Item 84 : Prefer algorithm calls to handwritten loops.

Item 85 : Use the right STL search algorithm.

Item 86 : Use the right STL sort algorithm.

Item 87 : Make predicates pure functions.

Item 88 : Prefer function objects over functions as algorithm and comparer arguments.

Item 89 : Write function objects correctly.

Type Safety :

Item 90 : Avoid type switching; prefer polymorphism.

Item 91 : Rely on types, not on representations.

Item 92 : Avoid usingreinterpret cast .

Item 93 : Avoid usingstatic cast on pointers.

Item 94 : Avoid casting away const.

Item 95 : Don’t use C-style casts.

Item 96 : Don’t memcpy or memcmp non-PODs.

Item 97 : Don’t use unions to reinterpret representation.

Item 98 : Don’t use varargs (ellipsis).

Item 99 : Don’t use invalid objects. Don’t use unsafe functions.

Item 100 : Don’t treat arrays polymorphically.

57

D Miscellaneous amendments to “C++ Coding Standards”

In this appendix, some of the amendments mentioned in Appendix C to some of the items in [10] are
discussed in more detail.

D.1 Amendments to items related to compiler/linker incompatibilities

There are three items in [10] that relate to portability problems associated with mixing and matching code
in different binary libraries compiled with different C++ compilers or with different compiler options. In
this context, the authors use the term “module” to mean a single library or a set of libraries containing
simiarly compiled binary object code.

In general, one can not assume that object code compiled by two or more different C++ compilers will
work together since the name-mangling needed for type-safelinkage is not even specified by the ISO C++
standard. A more typical problem is when the same compiler isused, but different compiler and/or linker
options are used. For example, some compilers allow you to turn support for exception handling on and off
and if an exception is thrown by one module it will not be handled correctly by another module that has
exception handling support turned off. A similar problem can happen when mixing static and shared
libraries, in Linux for example, where RTTI is handled differently and can result in dynamic casting
failures in cases where it would otherwise succeed.

In our model of software deployment, we distribute source code and a build process that users can
manipulate in order to set the exact compiler and linker options to match what is used by other libraries and
the application code that uses the libraries. Because we develop class libraries, it is simply not realistic to
isolate this type of code into libraries with small “Facade”type interfaces that are advocated in [10].

The specific items that we consider inappropriate are:

• Item 60: Avoid allocating and deallocating memory in different modules:

• Item 62: Don’t allow exceptions to propagate across module boundaries:

• Item 63: Use sufficiently portable types in a module’s interface:

All three of these items are related to the problem of mixing code created by different compiler and/or
linker options. However, they may also be related to mixed language programming. For example, in order
to ensure that your module is the most reusable, you might create a C-compatible interface that allows
clients coding in C (and even Fortran 77 in some cases) to calland be called by your module. If mixed
language programming is the issue, then a specialextern "C" interface should be created for the module
which will automatically satisfy Items 60, 62, and 63. Note that reference counting machinery in theRCP
andArrayRCP classes actually solves the problem of callingnew anddelete in different modules that is
described in Item 60 because the deallocator object that calls delete is create and assigned in the same
module wherenew is called which guarantees that they are consistent.

58

D.2 Amendments for ’using’ declarations and directives

In [10, Item 59], the authors say to never put ’using’ declarations into header files or before#include s and
that ’using namespace SomeNamespace’ directives are perfectly safe for code in source files after all
#include s. However, we will argue that:

• employingusing declarations to inject names of C++ classes or enums from onenamespace into
another is perfectly safe (this is more lax than what is suggested in [10, Item 59])

• employing ausing namespace SomeNameSpace directive in any context is harmful and should be
avoided (this is more restrictive than what is suggested in [10, Item 59]).

However, we agree that employingusing declarations for nonmember functions is dangerous and is tobe
avoided because of problems related to overloading and in what order overloads are declared and used (as
described in [10, Item 59]) .

Are all using declarations employed in header files dangerous? In [10, Item 59], the authors clearly show
that employing ’using’ declarations for nonmember functions is dangerous because of overloading. But
what about employing ’using’ declarations for C++ classes and other types?

To investigate the issues involved, consider the followingtoy C++ program (in the file
NamespaceClassUsingIssues.cpp):

/ /
/ / Header− l i k e d e c l a r a t i o n s
/ /

i n c l u d e < i o s t ream>

i n c l u d e <c s t d l i b>

namespace NamespaceA{

t emp la te<c l a s s T>
c l a s s A {
p u b l i c :

e x p l i c i t A(c o n s t T& a) : a (a) {}
vo id p r i n t (s t d : : os t ream &os) c o n s t{ os << ” \ na=”<<a <<”\n ” ; }

p r i v a t e :
T a ;

} ;

} / / namespace NamespaceA

/ / Add a u s i n g d e c l a r a t i o n t o i n j e c t ’A’ i n t o a n o t h e r namespace
namespace NamespaceB{ u s i n g NamespaceA : : A;}

/ / Now use t h e A c l a s s w i t h o u t namespace q u a l i f i c a t i o n i n NamespaceB
namespace NamespaceB{

A<double> foo (s t d : : os t ream &os , c o n s t A<i n t > &aa) ;

59

} / / namespace NamespaceB

/ / C re a t e a n o t h e r A c l a s s i n t h e g l o b a l namespace . With care ,we shou ld
/ / no t have any prob lems wi th t h i s and our code shou ld no t be a ff e c t e d by
/ / t h e p re s e n c e o f t h i s c l a s s .
temp la te<c l a s s T>
c l a s s A {
p u b l i c :

e x p l i c i t A(c o n s t T& a) : a (a)
{ s t d : : c e r r << ” \nOh no , c a l l e d : : A : : A (. . .) !\ n ” ; s t d : : e x i t (1) ; }

vo id p r i n t (s t d : : os t ream &os){ os << ” \ na=”<<a <<”\n ” ; }
p r i v a t e :

T a ;
} ;

/ / See what happens when you d e f i n e a n o t h e r c l a s s A i n NamespaceB which
/ / c o n f l i c t s w i th t h e u s i n g d e c l a r a t i o n ! Th is shou ld no t be al l owed and
/ / shou ld be caugh t by t h e comp i le r !

i f d e f SHOWDUPLICATE CLASS A

namespace NamespaceB{

t emp la te<c l a s s T>
c l a s s A {
p u b l i c :

e x p l i c i t A(c o n s t T& a) : a (a)
{ s t d : : c e r r << ” \nOh no , c a l l e d : : A : : A (. . .) !\ n ” ; e x i t (1) ; }

vo id p r i n t (s t d : : os t ream &os){ os << ” \ na=”<<a <<”\n ” ; }
p r i v a t e :

T a ;
} ;

} / / namespace NamespaceB

e n d i f / / SHOWDUPLICATE CLASS A

/ /
/ / I m p l e m e n t a t i o n s
/ /

/ / De f ine f u n c t i o n i n NamespaceB w i t h o u t namespace q u a l i f ic a t i o n f o r c l a s s A
NamespaceB : : A<double>
NamespaceB : : foo (s t d : : os t ream &os , c o n s t A<i n t > &aa)
{

A<double> ab (2 . 0) ;
aa . p r i n t (s t d : : cou t) ;
ab . p r i n t (s t d : : cou t) ;
r e t u r n ab ;

}
/ / NOTE: Above , we need e x p l i c i t namespace q u a l i f i c a t i o n f or t h e r e t u r n
/ / t ype ’ NamespaceB : : A<double>’ s i n c e we use namespace q u a l i f i c a t i o n t o
/ / d e f i n e nonmember f u n c t i o n s (see Thyra cod ing g u i d e l i n e s) . Wi thou t t h i s

60

/ / namespace q u a l i f i c a t i o n , t h e g l o b a l c l a s s ’ : : A’ would beassumed and
/ / you would g e t a c o m p i l a t i o n e r r o r . However , w i t h i n t h e f u nc t i o n , which
/ / i s i n t h e scope o f NamespaceB , we don ’ t need namespace q u a li f i c a t i o n s !

/ /
/ / User ’ s code . Th is code does no t t y p i c a l l y l i v e i n a namespace (o r i s
/ / i n a n o t h e r u n r e l a t e d namespace) . Here , some e x p l i c i t namespace
/ / q u a l i f i c a t i o n and u s i n g d e c l a r a t i o n s w i l l be r e q u i r e d t oavo id
/ / a m b i g u i t i e s .
/ /

i n t main ()
{

i f d e f i n e d (SHOWMISSING USING DECL)
/ / Here , no u s i n g d e c l a r a t i o n i s p rov ided . Th is w i l l r e s u l t in t h e
/ / g l o b a l c l a s s ’ : :A’ be ing used below which w i l l r e s u l t i n a comp i le r
/ / e r r o r when t h e NamespaceB : : foo (. . .) f u n c t i o n i s c a l l e d .Th is i s a
/ / f e a t u r e !

e l i f d e f i n e d (SHOWERRONEOUSUSING DIRECTIVE)
/ / Here we t r y t o j u s t i n j e c t a l l o f t h e names from NamespaceA in t o t h e
/ / l o c a l scope . However , t h i s w i l l r e s u l t i n t h e names ’ NamespaceA : : A’
/ / and ’ : : A’ be ing e q u a l l y v i s i b l e which w i l l r e s u l t i n a compi le r e r r o r
/ / when t h e f i r s t u n q u a l i f i e d ’A’ o b j e c t i s c r e a t e d below !
u s i n g namespace NamespaceA ;

e l s e
/ / I n j e c t t h e c l a s s name ’A’ i n t o t h e l o c a l scope and w i l l o v e rr i d e any
/ / (s l oppy) names p o l l u t i n g t h e g l o b a l namespace . Th is w i l lcause t h e
/ / g l o b a l ’ : :A’ c l a s s t o be h idden (which i s good !) .
u s i n g NamespaceA : : A;

e n d i f

A<i n t > aa (5) ;
A<double> ab = NamespaceB : : foo (s t d : : cout , aa) ;
ab . p r i n t (s t d : : cou t) ;

r e t u r n 0 ;

}

The above program defines a templated classA in namespaceNamespaceA and then does ausing
NamespaceA::A to inject this class name intoNamespaceB.

When the program is compiled and run with g++ (version 4.3.4), one gets:

$ g++ -ansi -pedantic -Wall -o NamespaceClassUsingIssues. exe
NamespaceClassUsingIssues.cpp

$./NamespaceClassUsingIssues.exe

a=5

61

a=2

a=2

This program has a few different ifdefs to show different types of errors that a compiler will detect.

1. What happens if one tries to define another classA in namespaceNamespaceB?

In the case of nonmember functions, overloads of a function exhibit strange and non-intuitive
behavior when one employs ’using’ declarations. However, what happens with classes?

In the above program, when one defines the macroSHOWDUPLICATE CLASS A when compiling, one
will get the following compile-time error:

$ g++ -ansi -pedantic -Wall -DSHOW_DUPLICATE_CLASS_A \
-o NamespaceClassUsingIssues.exe NamespaceClassUsingI ssues.cpp

NamespaceClassUsingIssues.cpp:53: error: redefinition of
’class NamespaceA::A<T>’

NamespaceClassUsingIssues.cpp:11: error: previous defi nition of
’class NamespaceA::A<T>’

Above, the error message generated by g++ 4.3.4 is very good and pinpoints the problem exactly.
This is in stark contrast to what happens when you have overloaded member functions which [10,
Item 59] explains.

Take-home Message: Employingusing SomeNamespace::SomeClass declarations to inject
names from one namespace into another seems to be safe and does not suffer from the gotchas
associated withusing declarations for (overloaded) nonmember functions.

2. What happens when the user’s code does not have an appropriate using declaration?

While theusing NamespaceA::A declaration inNamespaceB allows the code inNamespaceB to
avoid having to explicitly qualifyNamespaceA::A all the time, this does not automatically mean that
user code that does not live inNamespaceB will not have to do something to get at the nameA. The
user can either do explicit qualificationNamespace::A or can put ausing NamespaceA::A
declaration at the top of their namespace or in each functionthat they have (as is done in themain()
function above).

In the above program, if one defines the macroSHOWMISSING USING DECL, theusing
Namespace::A declaration will be missing inmain() and this will result in the compiler finding the
global ::A class which will cause a compiler error whenNamespaceB::foo(...) gets called. Here
is the error message that one gets when compiling with this macro defined:

$ g++ -ansi -pedantic -Wall -DSHOW_MISSING_USING_DECL \
-o NamespaceClassUsingIssues.exe NamespaceClassUsingI ssues.cpp

NamespaceClassUsingIssues.cpp: In function ‘int main()’ :
NamespaceClassUsingIssues.cpp:121: error: invalid init ialization of

reference of type ’const NamespaceA::A<int>&’ from expres sion of type ’
A<int>’

NamespaceClassUsingIssues.cpp:80: error: in passing arg ument 2 of ‘
NamespaceA::A<double> NamespaceB::foo(std::ostream&, const
NamespaceA::A<int>&)’

62

The above error message generated by g++ 4.3.4 here is not allbad as the compiler catches the
mistake and states the types involved.

Take-home Message: Always employusing SomeNamespace::SomeClass to inject type names
from other namespaces that you want to use in your namespace to protect your code from others who
pollute the global namespace.

3. What happens when the user code employs ausing namespace NamespaceAdirective when
there are conflicting names?

Since there is a global class::A , the user can not simply employ ausing namespace NamespaceA
directive or the compiler will complain that it does not knowwhich class to use.

In the above program, when one defines the macroSHOWERRONEOUSUSING DIRECTIVE when
compiling one gets the following very good compile error message:

$ g++ -ansi -pedantic -Wall -DSHOW_ERRONEOUS_USING_DIREC TIVE \
-o NamespaceClassUsingIssues.exe NamespaceClassUsingI ssues.cpp

NamespaceClassUsingIssues.cpp: In function ‘int main()’ :
NamespaceClassUsingIssues.cpp:120: error: use of ‘A’ is a mbiguous
NamespaceClassUsingIssues.cpp:45: error: first declare d as ‘

template<class T> class A’ here
NamespaceClassUsingIssues.cpp:10: error: also declared as ‘

template<class T> class NamespaceA::A’ here
NamespaceClassUsingIssues.cpp:120: error: parse error b efore ‘>’ token
NamespaceClassUsingIssues.cpp:121: error: use of ‘A’ is a mbiguous
NamespaceClassUsingIssues.cpp:45: error: first declare d as ‘

template<class T> class A’ here
NamespaceClassUsingIssues.cpp:10: error: also declared as ‘

template<class T> class NamespaceA::A’ here
NamespaceClassUsingIssues.cpp:121: error: parse error b efore ‘>’ token
NamespaceClassUsingIssues.cpp:122: error: ‘ab’ undecla red (first use

this function)
NamespaceClassUsingIssues.cpp:122: error: (Each undecl ared identifier

is reported only once for each function it appears in.)

Note that this type of example goes against the advise in [10,Item 59] where the authors state that it
is safe to employusing namespace SomeNamespace directives in*.cpp source files. This example
shows that this does not protect the code from others that pollute the global namespace. Note that
code that is written this way might compile one day and not thenext as it is fragile and can be broken
by other people that pollute the global namespace.

Take-home Message: Never employusing namespace AnyNamespace in any context as you
cannot guarantee the integrity of your code since people outside of your namespace can cause your
code to not compile.

63

E Arguments for adopting a consistent code formatting style

While there are reasonable ways to handle different code formatting styles within a project (e.g. custom file
styles in emacs), there are arguments for preferring a more consistent code formatting style that is used
throughout a project by all developers in the project. It is typically more difficult to modify code than to
read code that uses an unfamiliar coding style and thereforeconsistent coding styles is more important in
cases where multiple developers modify the same code base.

One of the more lenient opinions on coding style in the literature comes from [10, Item 0] where the
authors state:

“Do use consistent formatting within each source file or eveneach project, because it’s jarring
to jump around among several styles in the same piece of code.But don’t try to enforce
consistent formatting across multiple projects or across acompany7”.

Much stronger arguments for working toward a consistent code formatting style within a project are made
by other individuals and organizations who represent a widerange of views of software development.
These organizations and persons vary from those associatedwith open-source organizations (e.g. GNU) to
newer Agile methodologists (e.g. Extreme Programming) to large software companies (e.g. Microsoft). As
different as these various people and organizations view the nature of software (e.g. GNU vs. Microsoft)
and how it should be developed (e.g. GNU vs. Extreme Programming), they all agree that some
consistency in coding style is a good idea.

A few points are worth making before looking at opinions on formatting style expressed by these different
individuals and organizations. In each of the references cited, the individual or organization gives a
justification for the opinions expresses and it is up to the reader to weigh these arguments on their own.
Also, just because an opinion is expressed by an “expert” does not in and of itself automatically give that
opinion a lot of credence. However, when a wide number of different and diverse “experts” espouse the
same opinion, then such a point of view should be considered more seriously.

E.1 Statements on coding style from varied persons and/or organizations

Here we overview some options on consistent code formattingstyle from a variety of sources.

E.1.1 Open source software (the GNU project)

On one end of the spectrum is the open source software community that one can think of as the freest form
of software. A GNU package is usually not even developed by a cohesive set of developers but yet the
official GNU Coding Standard8 states:

7The implicit assumption in this latter qualification is thatdevelopers don’t interact heavily with multiple projects and multi-
ple projects don’t interact much with each other and therefore there is typically little advantage to having a company-wide code
formatting standard. However, if the same developers work together on multiple projects and go back and forth between projects
frequently, it is unclear what the opinion of the authors would be in this case.

8http://www.gnu.org/prep/standards/standards.html

64

“The rest of this section gives our recommendations for other aspects of C formatting style ...
We don’t think of these recommendations as requirements ...But whatever style you use,
please use it consistently, since a mixture of styles withinone program tends to look ugly. If
you are contributing changes to an existing program, pleasefollow the style of that program”.

While the above passage does not mandate a consistent codingstyle within a GNU package (because it
can’t, its free software), it does recommend a coding style9 and it asks that each project please use a
consistent coding style throughout a GNU project.

E.1.2 Agile Methods (Extreme Programming)

While the Extreme Programming and GNU movements are miles apart in terms of how it expects coders to
work together to create code, they both agree that using a consistent coding style within a project is
important.

In his popular 1999 book “Extreme Programming Explained” [2], Kent Beck explicitly listed “Coding
Standards” as one of XP’s twelve recommended practices. In this book, Beck states

“You couldn’t possibility ask the team to code to a common standard. Programmers are deeply
individualistic, and would quit rather than put their curlybraces somewhere else. Unless:

• The whole of XP makes them more likely to be members of a winning team.

Then perhaps they could be willing to bend their style a little. Besides, without coding
standards the additional friction slows pair programming and refactoring significantly”.

In this first book, Beck also comments on coding standards in the context of “collective ownership” of code
by stating:

“You couldn’t possibly have everybody potentially changing anything anywhere. Folks would
be breaking stuff left and right, and the cost of integrationwould go up dramatically. Unless:

• You integrate after a short enough time, so that chances of conflicts go down.

• ...

• You adhere to coding standards, so you don’t get into the dreaded Curly Brace Wars.

Then perhaps you could have anyone change code anywhere in the system when they see the
chance to improve it”.

As a result, many XP projects have insisted on requiring every member of the team to code in the same
way. So much to the point that one should not be able to tell whowrote a piece of code just in how it is
formatted. As of this writing, almost every source of information on XP on the Internet takes a very strong
opinion on the adoption of a consistent coding style by an XP group. The specific details of the coding

9The official GNU formatting style is one of the built-in styles in Emacs called the “gnu” style

65

style are not important, what is important is that everyone on the team helps to formulate and agrees to use
the same coding style.

In his updated 2005 book “Extreme Programming Explained: Second Edition” [3], Kent Beck has
restructured XP and now the “Coding Standards” practice is no longer specifically listed as a practice.
Does this mean that consistent code formatting is not longerimportant in XP? The simple answer is no. In
her article “The New XP”10 which outlines the second edition of Beck’s book and compares it to the first
edition, Michele Marchesi states:

“You must note that in the new XP we cannot find original practices ofcoding standards, that
is considered obvious, ... ”

And to put to rest any doubt how Beck himself feels about consistent coding styles he states in the second
edition:

“For example, people get passionate about coding style. While there are undoubtedly better
styles and worse styles, the most important style issue is that the team chooses to work towards
a common style. Idiosyncratic coding styles and the values revealed by them, individual
freedom at all costs, don’t help the team succeed”.

Therefore, it is clear that the flagship of the Agile programming movement, XP, clearly advocates that a
team of developers should work towards a consistent code formatting style.

E.1.3 Code Complete

In [7], Steve McConnell makes a strong argument that groups should adopt a consistent coding standard,
including reasonable guidelines for the formatting of source code.

There are several places in his book where McConnell stresses the importance of using a consistent
formatting style in a group project:

• “The bottom line is that the details of a specific method of structuring a program are much less
important than the fact that the program is structured consistently” [7, Section 31.1]. This quote is
almost an exact paraphrase of the statements made in the GNU coding standard document and by
Beck in the Extreme Programming books mentioned above.

• “The importance to comprehension and memory of structuringone’s environment in a familiarly way
has lead some researchers to hypothesize that layout might harm an expert’s ability to read a program
if the layout is different from the scheme the expert uses (Shell 1981, Soloway and Ehrlich 1984)”
[7, Section 31.1]. This implies that working with an unfamiliar style might handicap expert coders
more than beginner and intermediate coders.

• “Structuring code is important for its own sake. The specificconvention you follow is less important
than the fact that you follow the same convention consistently” [7, Chapter 31].

10 http://www.agilexp.org/downloads/TheNewXP.pdf

66

• “Many aspects of layout are religious issues. Try to separate objective preferences from subjective
one. Use explicit criteria to help ground your discussions about style preferences.” [7, Chapter 31].

• “Use conventions to spare you brain the challenge of remembering arbitrary differences between
different sections of code .” [7, Section 34.1].

• “The point of having coding conventions is to mainly reduce complexity. When you standardized
decisions about formatting, loops, variable names, modeling notations, and so on, you release mental
resources that you need to focus on more challenging aspectsof the programming problem. One
reason coding conventions are so controversial is that choices among the options have some limited
aesthetic base but are essentially arbitrary. People have the most heated arguments over their smallest
differences. Conventions are most useful when they spare you the trouble of making and defending
arbitrary decisions. They are less valuable when they impose restrictions in more meaningful areas.”
[7, Section 34.1].

• “The motivation behind many programming practices is to reduce a program’s complexity, and
reducing complexity is arguably the most important key to being an effective programmer.” [7,
Chapter 34].

• “When abused, a programming convention can be a cure that’s worse than the disease. Used
thoughtfully, a convention adds valuable structure to the development environment and helps with
managing complexity and communication.” [7, Chapter 34].

• “In general, mandating a strict set of technical standards from the management position isn’t a good
idea.” [7, Section 28.1].

• “If someone on a project is going to define standards, have a respected architect define the standards
rather than a manager ... If the architect is regarded as the projects’ thought leader, the project team
will generally follow standards set by that person.” [7, Section 28.1].

• “If your group resists adopting strict standards, considera few alternatives: flexible guidelines, a
collection of suggestions rather than guidelines, or a set of examples that embody the best practices.”
[7, Section 28.1].

• “Even if your shop hasn’t created explicit coding standards, reviews provide a subtle way of moving
toward a group coding standard–decisions are made by the group during reviews, and over time
group derives its own standards.” [7, Section 28.1].

One could summarize that McConnell advocates that having a consistent coding style as being an
advantage in many ways but cautions that the standards should be developed by the programmers in the
group and not dictated by nontechnical managers.

E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard

TheJoint Strike Fighter Air Vehicle C++ Coding Standardsdocument [5] from Lockheed Martin defines
C++ coding standards for high consequence applications (i.e. the multi-billion dollar JSF program). While
this standard is not the most strict standard out there, it does mandate many different aspects of code
formatting such as the placement and indentation of braces ’{}’ (AV Rules 59, 60, and 61) and the
formatting of function prototypes (AV Rule 58). The point isthat standards for high consequence (i.e. low

67

tolerances for defects) may legitimately or otherwise require greater uniformity in source code. While
some of the formatting mandates of this document are different than those suggested in [7, Chapter 31],
this JSF standard in general is advocated by such individuals as Bjarne Stroustrup11 and is therefore not
without some merit.

E.2 The keyboard analogy for coding styles

The issues involved in going back and forth between different unfamiliar code formatting styles are similar
to the issues in going back and forth between different computer keyboard layouts. While some people
may naturally prefer one type of keyboard to another (e.g. such as preferring an ergonomic keyboard to
avoid problems with repetitive stress injuries or people with larger hands having trouble with smaller
keyboards12), a person is most proficient when using a single type of keyboard for a long period of time.
While a person can generally get used to using a few differenttypes of keyboards that are used frequently
(such as the ergonomic keyboard for a desktop computer and a smaller laptop keyboard), having to work
occasionally on a very different keyboard really slows downa good typer and increases typing mistakes.
For example, a person who uses PC-style keyboards with the Control key on the lower left, are completely
handicapped when using a Sun keyboard where the Control key is where the Caps Lock key is on a PC
keyboard.

When given enough time, almost anyone can become accustomedto any reasonable keyboard layout and
can be productive (as long a unusual physical constraints are not involved). As long as the person uses the
keyboard consistently, the productivity will be about the same as with a more favored keyboard layout.
Therefore, except for certain physical constraints, a person can learn how to use most keyboard layouts
given enough time, but switching back and forth occasionally between different keyboards really damages
productivity and increases mistakes.

The same is true for having to read and modify code that uses different code formatting styles. Just about
anyone can become accustomed to just about any reasonable coding style if given enough time working
with a particular style. However, switching back and forth frequently between different coding styles really
does damages productivity and increases coding mistakes for some people, just as switching back and forth
between different keyboards can really damage productivity and increase typing mistakes.

E.3 Conclusions

The antagonism between pushing a common formatting style and allowing for individual freedom is
similar to a system-wide optimization problem that involves a number of subsystems. In our case, the
subsystems are individual coders and the whole system is theteam as a whole. Optimizing each subsystem
separately would mean that each developer would own and codea district part of the overall system. While
this approach maximizes individual developer productivity, it does not maximize overall productivity in
that it discourages and hinders collective code ownership that has been demonstrated to be highly effective
in the right settings (e.g. Extreme Programming). On the other hand, an overly ridged code formatting
standard will allow for collective code ownership but it will also damage the individual productivity of

11http://www.research.att.com/˜bs/C++.html
12Computer mice layouts show even greater variability than keyboards and going between different types can hurt productivity

even greater. For example, a standard mouse could not be moredifferent than a trackball-type of mouse and going from a standard
mouse to a trackball only occasionally can severely degradeproductivity if the individual is unfamiliar with the trackball.

68

every member of the team. Therefore, the “optimal” solutionto the code formatting problem is to have the
group adopt enough of a uniform style to foster collective code ownership and speed code reviews, but not
to needlessly damage individual coder productivity. The balance between these conflicting goals must be
handled with care and only group communication along with experience and experimentation will yield a
near-optimal solution to the code formatting standards problem for a particular team of developers.

While the above varied sources have different levels of opinions on the importance on consistent code
formatting, they all agree that it is the developers themselves that should come up with the guidelines, and
not non-technical managers. They also all seem to agree thata coding standard that is too ridged will do
more harm than good (i.e. by damaging the productivity and moral of individual programmers).

The majority opinion of these experts, therefore, seems to be that a team of software developers should get
together and collectively decide on a sufficient set of guidelines for code formatting and each member
should try to follow the spirit of the agreed upon style as much as is reasonable while being allowed to
bend or break the guidelines when appropriate.

69

F Guidelines for reformatting of source code

When a sufficiently common coding style is not being used by all developers in a project and no
recommendations for a common coding style exists, then someguidelines are needed for the situations
where code written by one individual is modified by another individual that uses a different coding style.
These guidelines address how developers should conduct themselves when modifying source files written
largely by someone else.

1. First and foremost, each developer should respect the other developers’ formatting styles when
modifying their code. If a developer has a preferred Emacs style, then that style should be listed
explicitly at the top of each source file that is modified. Thiswill help other developers that use
Emacs to stay consistent with the file’s style.

2. When only small changes are needed, a developer should abide by the formatting style already in use
in the file. This helps to respect other developers and helps to avoid needless changes for the version
control system to have to track. Again, when user-defined file-specific Emacs styles are specified,
then it is easy to maintain a file’s style when editing files through Emacs.

3. Reformatting a file written by someone else and checking itin is only justified if significant changes
are made. However, if a developer needs to understand a complicated piece of code in order to make
perhaps even a small change in the end, then that developer may also be justified in reformatting the
file. When a reformatting is done, the new Emacs formatting style should be added to the top of the
source file in order to make it easier for the original owner ofthe file and other developers to
maintain the new style.

4. Multiple re-formats of the same file should not be checked in over and over again as this will result
in massive increases the the amount of information that the version control system needs to keep
track of and makes diffs more difficult to perform.

The above guidelines ensure that individuals are given maximal freedom to format code to their liking but
also helps to foster the shared ownership and development ofcode. In addition, the use of user-defined
file-specific formats makes it easy for developers to accommodate formatting styles different from their
own.

70

v1.32

	Introduction
	Alpha-numeric item designations
	Naming conventions (NC)
	Naming and organization of source files (NOSF)
	Coding guidelines
	General coding guidelines (GCG)
	Error handling
	Memory management
	Object Control
	Object Introspection
	Miscellaneous coding guidelines

	Specification of data members and passing and returning objects from functions

	Formatting of source code
	General formatting source code principles (FSCP)
	Specific guidelines for formatting source code (FSC)

	Doxygen documentation guidelines
	General principles for function and class level documentation (DOXP)
	Specific Doxygen documentation principles (DOX)

	References
	Summary of guidelines
	Summary of Teuchos memory management classes and idioms
	Summary of ``C++ Coding Standards'' (CPPCS) with amendments
	Miscellaneous amendments to ``C++ Coding Standards''
	Amendments to items related to compiler/linker incompatibilities
	Amendments for 'using' declarations and directives

	Arguments for adopting a consistent code formatting style
	Statements on coding style from varied persons and/or organizations
	Open source software (the GNU project)
	Agile Methods (Extreme Programming)
	Code Complete
	Lockheed Martin Joint Strike Fighter C++ Coding Standard

	The keyboard analogy for coding styles
	Conclusions

	Guidelines for reformatting of source code

